7001 Quiz - Lauree triennali dell'area sanitaria

FISICA - SOLUZIONI E COMMENTI

Risposta: **D**. La formula dell'intensità di un'onda sonora è:

$$I = \frac{F \cdot v}{S}$$

Quindi per trovare le dimensioni dell'area è sufficiente invertire la superficie con l'intensità così da ottenere:

$$\Delta S = \frac{F \cdot v}{I} = \frac{0.2 \text{N} \cdot 330 \text{m/s}}{25 \text{W/m}^2} = 2,64 \text{ m}^2$$

- Risposta: **B**. Al minimo della resistenza corrisponde il massimo della potenza.
- Risposta: **B**. La velocità periferica medesima essendo la fune inestensibile.
- Risposta: **B**. Solo la temperatura si conserva a causa della trasformazione di stato.
- Risposta: **C**. Le onde sonore rappresentano compressioni generalmente di pressione, e quindi generalmente longitudinali.
- Risposta: A. Il numero di Avogadro definisce il numero di particelle che costituisce una mole.
- Risposta: A. La risultante della serie dei 3 condensatori si calcola come

$$\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} = \frac{3}{0.3\mu\text{F}}$$

da cui $C_{serie} = 0.1 \, \mu F$. Il parallelo invece ha risultato pari a $C_{fin} = 0.1 \, \mu F + 100 \, nF = 200 \, nF$.

- Risposta: **B**. Se il moto è rettilineo uniforme nessuna risultante delle forze agisce sul corpo tale da generare un accelerazione che risulta nulla.
- Risposta: E. Queste fonti di energia sono dette combustibili fossili, in quanto derivano dalla trasformazione, sviluppatasi in milioni di anni, della sostanza organica in forme via via più stabili e ricche di carbonio. Hanno numerosi vantaggi (basso costo, facilità di utilizzo) ma uno dei loro svantaggi è il fatto di non essere rinnovabili.
- Risposta: **C**. Lo spazio percorso è 252 m, la velocità media è 2,1 m/s.
- Risposta: **D**. La teoria planetaria dell'atomo è stata abbandonata per l'instabilità elettromagnetica del moto circolare di una carica elettrica:

infatti nel moto circolare esistono sempre delle accelerazioni.

- Risposta: **C**. Il calore è pari al prodotto tra calore specifico, massa e salto termico.
- 13 Risposta: A. L'afelio è il punto più vicino.
- Risposta: **B**. Secondo la legge di Ohm, l'attenzione ai capi di un conduttore è uguale al prodotto tra resistenza e corrente.
- Risposta: **B**. Gli spazi parziali sono 40 km, 20 km 50 km. Il tempo totale è 110 m = 1,83 h, la velocità media è 60 km/h.
- Risposta: **E**. L'espressione da utilizzare è la seguente:

$$\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$$

quindi

$$v_2 = v_1 \sqrt{\frac{T_2}{T_1}}$$

perciò è necessario trasformare le due temperature in temperature assolute 0 °C = 273 K mentre 50 °C = 323 K, da cui si troverà:

$$v_2 = 300 \text{ m/s} \sqrt{\frac{323}{273}} = 359 \text{ m/s}$$

- Risposta: **A**. Il peso specifico di un corpo è il peso diviso volume.
- Risposta: **B**. Il numero di disintegrazioni al secondo è misurabile in s^{-1} .
- Risposta: **A**. Le correnti entranti e uscenti in un dipolo si devono eguagliare in modulo.
- 20 Risposta: E. L'organismo scambia energia e materia con l'esterno.
- Risposta: **C**. Poiché le resistenze sono poste in serie la resistenza equivalente è uguale alla loro somma.
- 22 Risposta: **C**. $V = R \cdot I$.

23 Risposta: **C**. Partendo dal teorema di Bernoulli.

$$z + \frac{p}{\mu g} + \frac{v^2}{2g} = \text{costante}$$

Possiamo sostituire i valori del problema nell'equazione e otteniamo per il punto di partenza

$$z_1 + \frac{p_2}{\mu g} + \frac{v_2^2}{2g} = 0 + \frac{500 \text{ kPa}}{\mu g} + 0 = \text{ cost.}$$

mentre per il punto di arrivo

$$z_2 + \frac{p_2}{\mu g} + \frac{v_2^2}{2g} = z_2 + \frac{1 \text{ atm}}{\mu g} = \text{cost.}$$

Perciò se uguagliamo le 2 equazioni otteniamo:

$$\frac{500 \text{ kPa}}{\mu g} = z_2 + \frac{1 \text{atm}}{\mu g}$$

 $\frac{\text{da cui}}{\frac{500 \text{ kPa}}{\mu g}} - \frac{1 \text{atm}}{\mu g} = \frac{500000 - 101325}{1000 \cdot 9, 8} = z_2 = 40 \text{ m}$

- Risposta: **D**. Rispettivamente 200 N, 30 N, $2 \cdot 10^{-2}$ N, $2 \cdot 10^{5}$ N, 10^{-5} N.
- Risposta: **A**. Il prodotto 1 watt per 1 s è pari a 1 joule, misura dell'energia ovvero del calore.
- Risposta: **A**. Un cm³ pesa 1 grammo, quindi il corpo galleggia.
- Risposta: A. Le concentrazioni dei due metalli sono identiche, il potenziale è nullo.
- Risposta: **E**. Il rendimento è un parametro adimensionale.
- 29 Risposta: E. La potenza si misura in watt.
- Risposta: A. Il sistema subisce un lavoro senza disperdere calore che si trasforma quindi in energia interna.
- Risposta: **C**. Il corpo umano non può essere un sistema isolato.
- Risposta: **C**. Il lavoro fatto è pari alla differenza sull'energia cinetica è

$$L = \frac{1}{2} m v_2^2 - m v_1^2 = 64 \ 000 \ J.$$

Risposta: **B**. Per iniziare utilizziamo l'equazione $v = v_0 + at$ con la quale conosceremo il tempo che il corpo impiega per essere fermato dalla decelerazione $0 = 60 \text{ m/s}^2 - 15 \text{ m/s}^2 \cdot t$ da cui si ottiene

$$t = \frac{60 \text{m/s}}{15 \text{m/s}^2} = 4 \text{ s}$$

Adesso è necessario conoscere lo spazio percorso dal corpo durante la frenata attraverso l'equazione $s = s_0 + v_0 t + at^2/2$ che sostituendo risulta s = 0 + 60 m/s · 4 s + 0,5 (-15 m/s²) · 16 s = 120 m. Ora conoscendo lo spazio percorso calcoliamo il tempo necessario per tornare al punto di partenza, $0 = s_0 + v_0 t + 0.5$ $at^2 = 120 + 0 + 0.5 \cdot (-15) \cdot t^2$ da cui si ottiene t = 4 s. Da cui $t_{tot} = 8$ s.

Si può notare che un passaggio è in realtà inutile infatti essendo le condizioni al contorno costanti è inutile calcolare lo spazio percorso, ma una volta calcolato il tempo per fermare il corpo basta moltiplicarlo per 2 per ottenere il tempo totale.

- Risposta: **E**. Il Nm ha le dimensioni di kg m²/s² ovvero massa · accelerazione · distanza.
- Risposta: **C**. L'energia è il prodotto della potenza per il tempo.
- Risposta: **A.** L'accelerazione centripeta (che genera l'azione centrifuga) è pari a 3 $(2 \pi/6)^2$.
- Risposta: **E**. Il momento di una forza è il prodotto vettoriale di una forza per il braccio (distanza minima tra polo e retta d'azione).
- Risposta: **B**. Un dielettrico diminuisce sempre l'entità del campo elettrico.
- 39 Risposta: **E**. Moto parabolico t = (h/2g)1/2 = 3s.
- Risposta: **A**.
 La densità si può misurare in kg/m³.
- Risposta: **C**. L'instabilità deriva dalle forze elettriche repulsive.
- Risposta: **A**. La diffrazione è un fenomeno facilmente spiegabile, con l'ipotesi ondulatoria della luce.
- Risposta: **C**. Una qualsiasi specie chimica allo stato aeriforme è vapore al di sotto della sua temperatura critica.
- Risposta: **B**. Secondo il principio di conservazione della quantità di moto le due quantità di moto sono uguali e contrarie.
- Risposta: **E.** Partendo dalla relazione di Laplace $\Delta p = 2\tau/R$ possiamo scrivere $R = 2\tau/\Delta p$. Essendo 2 mmHg = 266 Pa allora

Essendo 2 mmHg = 266 Pa allora
$$R = \frac{2 \cdot 2, 2 \cdot 10^{-2} \text{N/m}}{266 \text{Pa}} = 0,17 \text{ mm}$$

Risposta: **B**. La legge dei gas perfetti è pV = nRT.

- Risposta: **D**. L'energia elettrica dipende dal prodotto della tensione (o differenza di potenziale elettrico) e la carica.
- Risposta: **B**. Nel Sistema Internazionale le forze si misurano convenientemente in newton.
- Risposta: **D**. Solo la prima ha densità inferiore a quella dell'acqua e quindi galleggia.
- Risposta: **D**. Il moto è la composizione di un moto rettilineo uniforme nella direzione del campo magnetico e di un moto circolare uniforme in cui la forza di Lorentz eguaglia l'azione centrifuga.
- Risposta: **B**. Le onde elettromagnetiche si propagano alla velocità della luce.
- Risposta: **D**. Non è possibile perché la compressione richiede lavoro che si trasforma in energia interna.
- Risposta: **A**. La temperatura termodinamica è una funzione di stato.
- Risposta: **B**. Nel Sistema Internazionale (SI) l'energia si misura in joule.
- 85 Risposta: **D**. Gli orbitali sono s, p, d, f.
- Risposta: **E**. La densità è il rapporto tra massa e volume occupato.
- Risposta: **D**. Il volume risulta proporzionale al rapporto tra temperatura e pressione.
- Risposta: **D**. Mantenendo la portata alla riduzione di sezione corrisponde un aumento di velocità.
- Risposta: **A**. Accelerazione verticale = 9.8 1.2= 8 m/s^2 , forza = 24 kN.
- Risposta: **B**. La legge dei gas perfetti è indipendente dalla natura molecolare del gas, ma dipende dal numero di moli confinate nel sistema.
- Risposta: **E**. Le cariche elettriche inducono un campo elettrico la cui distribuzione di potenziale definisce l'entità del campo.
- Risposta: **A**. Il periodo è una frazione di secondo tale che 10⁷ oscillazioni vengono compiute in un secondo.
- 63 Risposta: **B**. Capacità = carica/potenziale.

- Risposta: **C**. Se le risultanti delle forze e dei momenti sono nulle un corpo è in equilibrio indifferente.
- Risposta: **A**. 60 min -> 30 km, 30 km/h, 8,33 m/
- Risposta: **E**. Lo spazio percorso è $1/2 gt^2 = 200$ m.
- 67 Risposta: **C**. Utilizziamo la relazione:

$$v = \sqrt{\frac{p_e}{\rho_e}}$$

che descrive la velocità negli aeriformi, per l'aria

$$\gamma = \frac{c_p}{c_v} = 1, 4,$$

mentre ρ aria = 1,3 · 10⁻³ g/cm³ = 1,3 kg/m³. Per cui sostituendo i dati nella prima espressione otteniamo:

$$v = \sqrt{\frac{\gamma p_e}{\rho_e}} = \sqrt{\frac{1, 4 \cdot 1, 013 \cdot 10^5 \text{ N/m}^2}{1, 3 \text{ kg/m}^3}} = 330 \text{ m/s}$$

- Risposta: E. La viscosità interna di un fluido rappresenta la forza riferita a una superficie unitaria e dovuta alla differenza di velocità.
- Risposta: **C**. Dal primo principio della dinamica un corpo non soggetto ad alcuna forza prosegue nel suo moto rettilineo uniforme.
- Risposta: **B**. La quantità di moto è una grandezza vettoriale sommabile con la regola del parallelogramma.
- Risposta: **D**. Se la tensione di vapore dell'acqua eguaglia la pressione atmosferica, allora il liquido e il vapore sono in equilibrio termodinamico.
- Risposta: **D**. Il dinamometro permette di misurare delle forze.
- Risposta: **D**. t = 3.19 s durante il moto decelerato, e altrettanto durante il moto accelerato.
- Risposta: **B**. Il suono arriva al cervello sotto forma di onda elettrica trasmessa dai neuroni.
- Risposta: **E**. La differenza di potenziale si può misurare in volt ovvero in joule/coulomb.
- Risposta: **C**. L'anno luce misura una distanza pari al prodotto della velocità della luce per un anno.

- Risposta: A. Sottraendo calore a una miscela a 0 °C, la fase ghiaccio aumenta percentualmente.
- Risposta: C. Un trasformatore trasforma solamente alta tensione alternata in bassa tensione alternata o viceversa.
- Risposta: A. Il peso è la forza esercitata da una massa sotto l'azione dell'accelerazione di gravità.
- 80 Risposta: A. La trasformazione isoterma avviene a temperatura costante
- Risposta: **E.** Impulso = differenza della quantità di moto. 20 N · 5 s/(10 kg) = 10 m/s.
- Risposta: C. Dipende dall'indice di rifrazione dalla lente.
- Risposta: A. Il rendimento di un ciclo di Carnot si misura come

$$\eta_c = 1 - T_{min}/T_{max}$$

 $\eta_c = 1 - T_{min}/T_{max}$ dove le due temperature sono ovviamente gli estremi del ciclo. Nel nostro caso il primo ciclo ha rendi-

$$\eta_c = 1 - T_{min}/T_{max} = 1 - 200 \text{ K}/400 \text{ K} = 0.5$$
 mentre il secondo

$$\eta_c = 1 - T_{min}/T_{max} = 1 - 600 \text{ K/900 K} = 0.33.$$

- 84 Risposta: **C**. 10 kg forza sono 98 N.
- Risposta: A. La somma algebrica tra la forza peso e la reazione vincolare è nulla e quindi nulla l'accelerazione.
- Risposta: E. Utilizziamo il teorema di Bernoul-

li che ha la seguente formulazione:

$$z + \frac{p}{\mu g} + \frac{v^2}{2g} = \text{costante}$$

Per il punto di partenza possiamo scrivere $p_1/\mu g =$ costante poiché partiamo da una situazione di quiete quindi v = 0 e l'altezza la supponiamo pari a zero. Per il punto di arrivo scriviamo invece z_2 = costante dal momento che è richiesta la sovrapressione per innalzare l'acqua di 10 m. Se uguagliamo le equazioni si

$$\frac{p_1}{z_2} = z_2$$

 $\frac{p_1}{\mu g} = z_2$ da cui $z_2 \cdot \mu g = p_1 = 10 \text{ m} \cdot 1000 \text{ kg/m}^3 \cdot 9,8 \text{ m/s}^2 = 98$ kPa.

Risposta: **D**. Dimezzando il volume la densità, rapporto tra massa e volume, raddoppia.

- Risposta: C. Una particella neutra in moto non risente dell'effetto del campo magnetico quindi persiste nel suo moto rettilineo uniforme.
- Risposta: C. Sotto l'azione della forza di Lorentz una particella carica descrive una traiettoria circolare se attraversa un campo magnetico senza avere una velocità nella direzione del campo medesimo.
- Risposta: A. Il periodo è proporzionale alla radice quadra della lunghezza del pendolo.
- Risposta: A. Un corpo non soggetto ad alcuna forza prosegue nel suo moto rettilineo uniforme.
- Risposta: **D**. Dalla composizione del moto.
- Risposta: C. I raggi X sono radiazioni elettromagnetiche ad altissima energia.
- Risposta: C. Secondo l'ottica geometrica uno specchio restituisce un'immagine virtuale dell'oggetto reale.
- Risposta: E. Nella caduta l'energia cinetica acquistata deve trasformarsi nuovamente in energia potenziale ed essere assorbita dall'attrito interno della bilancia.
- Risposta: **A**. L'energia cinetica di un corpo è $E = \frac{1}{2} mv^2,$

se il binomio mv^2 è costante l'energia dissipabile sarà la medesima.

- Risposta: D. Nel SI la pressione si misura in pascal, pari a un 1 newton per metro quadro.
- Risposta: A. La forza conosciuta come forza di Lorentz, non compie lavoro.
- Risposta: **D**. Impulso = differenza della quantità di moto: $4 \cdot 2 = 8$.
- Risposta: **B**. La temperatura di 27 °C corrisponde a 300 K, mentre 127 °C corrispondono a 400k; secondo la legge dei gas perfetti se il volume viene mantenuto, la pressione è direttamente proporzionale alla temperatura.
- Risposta: D. Il lavoro, o energia, è il prodotto dimensionale di una massa per una velocità al quadrato.

- Risposta: **C**. Nel moto uniformemente accelerato lo spazio è direttamente proporzionale al quadrato del tempo.
- Risposta: **B**. La trasformazione isocora avviene a volume costante.
- Risposta: E. Un vettore esprime il verso, la direzione e l'intensità della grandezza che rappresenta.
- Risposta: A. L'induzione magnetica si misura in tesla, in onore al famoso fisico ungherese.
- Risposta: **D**. Dal secondo principio della dinamica il rapporto tra forza e accelerazione definisce la massa inerziale di un corpo.
- Risposta: **A**. Accelerazione verticale = $4.9 \cdot 10^{15}$ m/s², tempo $2.5 \cdot 10^{-9}$ s, spazio verticale = 1.54 cm.
- Risposta: **D**. La resistenza di un filo si può scrivere come

$$R = \rho \frac{l}{S}$$

dove ρ = cost mentre l = lunghezza e S = sezione. Perciò se sostituiamo i valori del problema si ottiene

$$R = \rho \frac{2L}{\frac{S}{2}} = \rho \frac{4l}{S}$$

quindi la resistenza aumenta di 4 volte, di conseguenza l'intensità della corrente diminuisce di 4 volte.

- Risposta: **D**. Il diametro dimezzandosi riduce a un quarto la sezione di passaggio delle cariche incrementando di quattro volte la resistenza (legge di Ohm resistenza = resistenza specifica · lunghezza/ sezione retta del conduttore)
- Risposta: A. 20 °C sono circa 300 K, 400 °C sono circa 700 K, l'energia è proporzionale alla temperatura termodinamica per la costante di Boltzaman (R gas perfetti fratto numero di Avogadro).
- Risposta: **B**. Un nodo ha un potenziale definito e definisce la convergenza di tre rami.
- Risposta: A. La trasformazione di stato sottrae energia al sistema definito dal recipiente.
- Risposta: A. Prendiamo c = 5 e a = 6; questi due vettori hanno come somma c + a = 11 che è esattamente uguale alla somma dei moduli dei due

vettori dal momento che i vettori sono entrambi positivi.

- Risposta: **C**. L'energia meccanica o energia totale è la somma della sua energia cinetica e potenziale.
- Risposta: **D**. L'accelerazione centripeta agisce in direzione radiale.
- Risposta: **C.** La densità dipende sia dal peso sia dal volume, quindi varia in ragione alla variazione di volume.
- Risposta: A. La costante dielettrica si misura in farad/metro dall'analisi dimensionale.
- Risposta: **D**. La densità è il rapporto tra massa e volume.
- Risposta: A. Un nucleo è costituito da protoni e neutroni.
- Risposta: **C**. Due grandezza sono direttamente proporzionali quando il loro rapporto ha un valore costante.
- Risposta: **C**. La densità varia in funzione della variazione di volume, come per esempio potrebbe accadere in seguito a una compressione.
- Risposta: A. La forza gravitazionale è sempre attrattiva.
- Risposta: E. Grazie al fenomeno dell'induzione magnetica, correnti alternate inducono tensioni alternate di entità differente da quella di ingresso.
- Risposta: **A**. Il terzo principio recita che a ogni azione corrisponde una reazione.
- Risposta: **C**. La carica subisce una forza ortogonale alla direzione del moto e alla direzione del campo.
- Risposta: E. Utilizzando la legge di Laplace $p = \frac{2\tau}{r} = \frac{2 \cdot 3, 3 \cdot 10^{-3} \text{ N/m}}{0,05 \text{ mm}}$

= 132 Pa = 0.0013 atm = 1 mmHg

- Risposta: **B**. Il rendimento è l'effetto utile/spesa = (450-150)/450 = 2/3.
- Risposta: **B**. Un satellite in orbita terrestre risente della forza di gravità.

- Risposta: **C**. La legge dei gas perfetti definisce il legame tra pressione volume e temperatura, secondo PV/T = costante.
- Risposta: **E**. Nel Sistema Internazionale (SI) l'unità di misura del calore è il joule.
- Risposta: **B**. La circonferenza equatoriale è di 40 000 km ed è percorsa in 24 h.
- Risposta: **A.** Dal primo principio della termodinamica calore ed energia sono equivalenti.
- Risposta: **D**. Per definizione di numero di Avogadro è pari $6{,}023 \cdot 10^{23}$.
- Risposta: **D**. Tutte le unità di misura dell'energia misurano anche il calore.
- Risposta: **B**. Il campo è un campo di forze proporzionali alle intensità di carica, quindi è misurabile come una forza per intensità di carica (F = qE, campo elettrico E = F/q).
- Risposta: A. Per il teorema di Bernoulli possiamo scrivere:

$$z_1 = \frac{p_1}{\mu g} + \frac{v_1^2}{2g} = z_2 + \frac{p_2}{\mu g} + \frac{v_2^2}{2g}$$

indicando con 1 e 2 rispettivamente i punti in cui la velocità è di 20 cm/s e di 10 cm/s. Poiché il condotto è orizzontale $z_1 = z_2$ perciò la differenza di pressione è pari a $\Delta p = \mu \ (v_1^2 - v_1^2)/2 = 15,9$ Pa.

- Risposta: **C**. La variazione nel tempo del lavoro compiuto è la potenza utile di una macchina.
- Risposta: **C**. Il calore di evaporazione viene ceduto dal liquido che si raffredda.
- Risposta: **E**. Tutte le risposte caratterizzano la natura ondulatoria del suono.
- Risposta: **C**. Solo fornendo lavoro il calore può fluire da un corpo freddo a uno caldo (ciclo frigorifero).
- Risposta: **C**. 5 atm, sono 5 kgf per centimetro quadro ovvero circa $50 \cdot 10^4$ Pa = $5 \cdot 10^5$ Pa.
- 142 Risposta: **C**. 1000 cm³ sono 1 dm³ o un litro.
- Risposta: **E**. Il baricentro è il polo di riduzione della forza peso.
- Risposta: **D**. Quando un raggio di luce incide una superficie è necessario calcolare l'angolo limite per conoscere il comportamento del raggio θ_1 ,

l'angolo limite si calcola come

$$\theta_l = \arcsin \frac{n_1}{n_2}$$

dove n_1 e n_2 sono gli indici di rifrazione dei mezzi. È l'indice di rifrazione dell'aria che è pari a 1, quindi se sostituiamo i dati si ottiene

$$\theta_l = \arcsin \frac{n_1}{n_2} \arcsin \frac{1}{1,6} = 38,68^{\circ}$$

Se l'angolo di incidenza del raggio è maggiore di θ_l il viaggio viene totalmente riflesso, quindi nel caso descritto dal problema il raggio viene totalmente riflesso.

145 Risposta: **D**.

Calore iniziale = calore dei due masse – parte calore latente = $60 \cdot 0.1 + 0 \cdot 0 - X \cdot 80 \cdot 0.1 =$ = $6 - X \cdot 8$ = calore finale: la frazione X di ghiaccio che cambia di fase raffredda la temperatura fino alla temperatura di fusione.

- Risposta: **C.** Nel Sistema Internazionale (SI) l'espressione non valida è ampere = volt · ohm, che viola la legge di ohm.
- Risposta: **E**. Nel moto armonico, proprio di un oscillatore ideale, forza e spostamento sono proporzionali e opposti in segno essendo causati da una forza di richiamo elastico.
- Risposta: **C**. Il fattore di conversione tra la velocità espressa in km/h e la velocità espressa in m/s è 3,6 km/h = 1m/s. Quindi la velocità di 120 km/h corrisponde a 33 m/s.
- Risposta: **B**. Isotopi diversi dello stesso elemento hanno diverso numero di neutroni.
- Risposta: **B**. Le due leggi di Faraday riguardano l'elettrolisi.
- Risposta: **E**. 640 N applicati a una massa di 30 kg, producono un'accelerazione di 21,3 m/s², che sommati vettorialmente alla accelerazione verticale restituiscono l'accelerazione totale di 23,6 m/s².
- 152 Risposta: **D**. Partiamo dal teorema di Bernoulli.

$$z + \frac{p}{\mu g} + \frac{v^2}{2g} = \text{costante}$$

che per il punto di partenza possiamo scrivere:

$$z + \frac{p}{\mu g} + \frac{v^2}{2g} = 0 + \frac{500 \text{ kPa}}{\mu g} + \frac{10^2 \text{m}^2/\text{s}^2}{2g}$$

Questa quantità è uguale all'altezza massima raggiungibile dal fluido, supponendo che in quel punto la pressione e la velocità siano zero quindi:

$$z = \frac{500 \text{ kPa}}{9,8\text{m/s}^2 \cdot 1000\text{kg/m}^3} + \frac{10^2 \text{m}^2/\text{s}^2}{2 \cdot 1000\text{kg/m}^3} =$$

$$= 51 \text{ m} + 5 \text{ m} = 56 \text{ m}$$

- Risposta: **C**. Nell'operazione di divisione vengono divisi sia operandi sia unità di misura.
- Risposta: **C**. Secondo il secondo principio della dinamica forza e accelerazione sono proporzionali, essendo la massa inerziale il rapporto tra queste due grandezze.
- 155 Risposta: **B**. Il lavoro meccanico è pari a zero.
- Risposta: A. La forza in questione, anche nota come forza di Lorentz, si esercita solo se la velocità e il campo non sono paralleli.
- Risposta: **D**. La colonna d'acqua pari una pressione di un'atmosfera è circa 13 volte più alta della colonna di mercurio.
- Risposta: **C**. Il lavoro di una forza è dato dal prodotto scalare tra forza e spostamento quindi una grandezza scalare.
- Risposta: **E**. Il peso è una forza si misura in newton.
- Risposta: **B**. Calore di un corpo ed energia cinetica delle particelle sono equivalenti.
- Risposta: **C**. La somma vettoriale delle forze è pari alla lunghezza della diagonale di un quadrato di lato pari alla forza.
- Risposta: **D**. La quantità di moto totale si conserva: 5 m/s \times 10 kg = $v_{fin} \times$ 12kg, v_{fin} circa = 4,2 m/s.
- Risposta: **E**. In un moto uniformemente accelerato, l'accelerazione è costante.
- Risposta: **C**. Se il corpo è assimilabile a un punto materiale posto nel suo baricentro la curva descritta dal baricentro è la traiettoria del corpo.
- Risposta: **A.** Accelerazione verticale = 9.8 + 1.2= 11 m/s^2 , forza = 33 kN.
- 166 Risposta: **C**. Media pesata della temperature.
- Risposta: E. La portata in massa è definita dal prodotto densità per velocità per sezione retta, e rappresenta il flusso del prodotto velocità per densità. Quando la densità è costante può essere definita

in modo conveniente la portata in volume come dal prodotto velocità per sezione retta, flusso del vettore velocità.

- Risposta: **C**. Nel sistema CGS l'energia si misura in erg.
- Risposta: **A.** Massa · velocità = quantità di moto, $5 \cdot 2 \text{ kg m s}^{-1}$.
- Risposta: **E**. La polarizzazione di un dielettrico avviene formando dei dipoli elettrici allineati con il campo.
- Risposta: **A**. Quando la velocità e il campo magnetico sono paralleli il prodotto esterno tra questi è pari a zero e quindi anche la forza $F = qv \wedge B_0$ esercitata dal campo magnetico sulla particella.
- Risposta: **A**. 4,186 joule equivalgono a una caloria definita come il calore necessario a riscaldare un grammo d'acqua di un grado.
- Risposta: **D**. Il processo è possibile somministrando lavoro, secondo il secondo principio della termodinamica.
- Risposta: **D**. La forza gravitazionale è inversamente proporzionale al quadrato della distanza.
- Risposta: **B**. Unità di misura della portata in volume è m³/s.
- Risposta: **A**. Si ricava inizialmente la densità del corpo $\rho = M/V = 1555,56 \text{ kg/m}^3$; per trovare il suo peso apparente, una volta immerso, è necessario fare la differenza fra la sua forza peso e la spinta fornita al corpo dal volume di acqua spostato.

$$P = \rho gV =$$

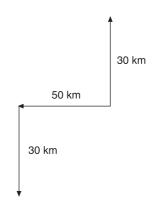
= 1555,56 kg/m³ · 9,8 m/s² · 9 · 10⁻⁴ m³ =
= 13,72 N

Mentre la spinta è

 $S = \rho^{5} gV = 1000 \text{ kg/m}^{3} \cdot 9.8 \text{ m/s}^{2} \cdot 9 \cdot 10^{-4} \text{ m}^{3} = 8.82 \text{ N}.$

La differenza tra i due valori risulta P - S = 4.9 N.

- Risposta: **C**. Lo spazio percorso è 1/2 $gt^2 = 4.6 \cdot 10^{13}$ m
- 178 Risposta: **C**. Il volt è il rapporto tra il joule e il coulomb.
- Risposta: **D**. Per la soluzione di sali presenta un innalzamento ebullioscopico.
- Risposta: **A**. La pressione è definita come il rapporto fra la componente normale della forza


7

esercitata su di una superficie e l'area della superficie stessa.

- Risposta: A. Come avrebbero spiegato altri padri della Fisica, essa nasce dall'esperimento: esso sarebbe fallito, poiché lo sperimentatore non avrebbe potuto misurare alcunché arrivando magari a conclusioni erronee immaginando che qualsiasi colonna di liquido potesse rimanere in equilibrio.
- Risposta: **A**. Le proprietà chimiche sono definite solo dal numero di protoni/elettroni.
- Risposta: **B**. È il rapporto del seno dei due angoli.
- Risposta: **C**. Tutte le antiparticelle hanno le medesime masse delle particelle e cariche opposte.
- Risposta: **B**. Nel collegamento in parallelo i due condensatori sono posti alla medesima tensione.
- Risposta: **B**. Tutti i corpi dotati di massa generano un campo gravitazionale.
- Risposta: **D**. Calcoliamo inizialmente la forza peso $F_{peso} = M \cdot g = 55 \cdot 9.8 = 539$ N poi il lavoro svolto da questa $L = F_{peso} \cdot s = 539 \cdot 5 = 2695$ J. La potenza viene espressa come lavoro/tempo perciò P = 2695 KJ/4 s = 674 W.
- Risposta: **B**. Stessa energia cinetica media e rapporti in massa 1 a 16, l'idrogeno ha una velocità quadratica media (con cui calcolo l'energia cinetica direttamente proporzionale alla temperatura termodinamica) quattro volte maggiore.
- Risposta: **B**. La velocità è tangenziale e costante in modulo, quindi la componente tangenziale è costante e la sua accelerazione è nulla, infatti, la sua derivata temporale in un sistema di riferimento orientato come la velocità istantanea ha solo componente radiale.
- Risposta: **E**. Ai poli non c'è l'effetto della forza centrifuga.
- Risposta: **D**. L'erg è la misura dell'energia nel sistema CGS.
- Risposta: **A**. 6 m³ corrispondono a 6000 litri in 1 h, perciò se dividiamo per 60, (i minuti presenti in 1 h), otteniamo 6000/60 = 100 l/min.
- Risposta: **B**. Un centimetro cubo pesa circa un grammo.

- Risposta: A. In un orologio la lancetta dei minuti compie un angolo giro in un'ora.
- Risposta: E. In questo caso può essere utile un disegno. Le frecce rappresentano gli spostamenti della nave. Per ottenere lo spostamento totale è sufficiente fare la risultante dei tre vettori. Come si vede il primo e l'ultimo vettore sono lungo la stessa direzione quindi sarà sufficiente sommarli. Quindi la risultante degli spostamenti sarà

$$r = \sqrt{50^2 + 60^2} = 70 \text{ km}$$

- Risposta: A. L'abbassamento crioscopico diminuisce per la diluizione.
- 197 Risposta: E. L'espressione corretta è 0.5 mv^2 .
- 198 Risposta: **B**. $R_{\text{tot}} = 5$ ohm, i = 12/5 = 2,4 A.
- Risposta: **C**. I raggi X sono radiazioni a elevata frequenza con potere penetrante elevato.
- Risposta: **D**. Il prodotto forza per una distanza è normalmente vettoriale.
- Risposta: **B**. Per definizione di newton esso imprime un'accelerazione di 1 m/s² a una massa di 1 kg.
- Risposta: **D**. Il rendimento è una quantità adimensionale.
- Risposta: **B**. Solo se i corpi costituiscono un sistema isolato.
- Risposta: **A**. Per il principio di azione e reazione il valore è il peso dell'individuo ovvero 588 newton.
- Risposta: **E**. Il campo magnetico è privo di potenziale poiché non è conservativo (leggi di Maxwell).

- Risposta: **D**. Forza peso e reazione vincolare si annullano.
- **207** Risposta: **C**. 5.20 = 100 joule.
- Risposta: **B**. La frequenza è indirettamente proporzionale al periodo.
- Risposta: **C**. Le condizioni normali sono di 0 °C e 1 atm.
- Risposta: **D**. Nei solidi il calore si trasferisce solo per conduzione.
- Risposta: **C**. L'accelerazione angolare è comune e uguale a zero essendo il moto circolare uniforme.
- Risposta: **A**. Il potenziale di un punto dello spazio è indipendente dalla quantità di carica posta nel punto che è necessariamente infinitesima.
- Risposta: E. Velocità e spostamento sono in quadratura.
- 214 Risposta: **B**. La temperatura di –183 °C è circa 183 K; 183 + 183 = 276 K = 0 °C.
- Risposta: **B**. Il liquido è uno degli stati della materia.
- Risposta: **B**. Nel Sistema Internazionale (SI) il lavoro si misura in joule.
- Risposta: **C**. In condizioni normali una mole di gas occupa 22,414 l.
- Risposta: E. Il prodotto potenza per il tempo definisce un lavoro.
- Risposta: **A**. Il lavoro compiuto è pari alla differenza di energia cinetica.
- Risposta: **C**. L'unità di misura del campo magnetico è il tesla.
- Risposta: **A**. Il livello di galleggiamento rimane pressoché invariato.
- Risposta: **B**. Il prodotto tempo per potenza = energia è il medesimo.
- Risposta: E. Essendo la velocità normale al campo magnetico si svilupperà una forza uscente dal piano contenente il vettore campo magnetico e il vettore velocità, quindi per contrastare questa forza che farà deviare la velocità è necessario introdurre un campo elettrico perpendicolare al piano

- contenente il campo magnetico e la velocità, quindi normale a entrambi.
- Risposta: **B**. Il calore totale si conserva: il calore iniziale è pari a 30 kcal, la massa finale è di 1,5 kg quindi la temperatura finale è 20 °C.
- Risposta: **B**. L'energia cinetica che si trasforma in calore è proporzionale al quadrato della velocità.
- Risposta: **B**. L'errore relativo è il rapporto tra errore assoluto e valore medio (0.5/20 = 2.5%).
- Risposta: **A**. La direzione di moto è perpendicolare alla direzione di oscillazione del campo elettrico e magnetico.
- Risposta: A. Il moto di un tale corpo è inizialmente uniformemente accelerato poiché le forze viscose sono nulle a velocità nulla, dopo un certo tempo la velocità diventa stazionaria poiché le forze viscose eguagliano la forza peso.
- Risposta: A. La frequenza viene espressa in giri/s = Hz perciò è necessario dividere la quantità 1800 per 60, cioè i secondi presenti in un minuto 1800/60 = 30 Hz.
- Risposta: **D**. Dalle leggi di Ohm la resistenza è pari al prodotto tra la resistività specifica la lunghezza del conduttore e l'inverso della sezione del conduttore.
- Risposta: **B**. Errore relativo = errore assoluto/ valore medio = 0.5/20 = 2.5/100.
- Risposta: **E.** Essendo la forza che un campo magnetico applica su una particella carica $F = qv \wedge B_0$ dove v è la velocità della particella, l'unica affermazione corretta è la **E**.
- Risposta: **E**. Un neutrone non è elettricamente carico.
- Risposta: **C**. Il moto di un corpo inizialmente in quiete soggetto a una forza costante è rettilineo uniformemente accelerato.
- Risposta: **A**. Infatti per una macchina di Carnot vale la relazione $Q_1 Q_2 = L$ per cui sostituendo i valori del problema si ottiene

$$Q_1 - L = Q_2 = 500 \text{ J}.$$

- Risposta: **E**. Il momento di una forza è una quantità vettoriale.
- Risposta: **A**. Il campo magnetico variabile nel tempo è perpendicolare al filo.

Soluzioni e commenti

- Risposta: **B**. Se consideriamo il primo principio della termodinamica $\Delta U = Q L$ e sostituiamo i valori corrispondenti otteniamo $\Delta U = 400$ cal -418 J = 300 cal che corrisponde alla quantità di calore che il frigorifero ha prelevato dall'ambiente esterno.
- Risposta: **C**. Un solenoide induce un campo magnetico costante.
- Risposta: **A**. Le gittate sono proporzionali al $\cos 2i$, con *i* inclinazione.
- Risposta: **B**. Durante la caduta, un grave aumenta la sua velocità.
- Risposta: **D**. La forza dipende dal prodotto delle cariche fratto il quadrato delle distanze $(2 \times 2/2^2 = 1)$.
- Risposta: **B**. Per fluidi pressoché incomprimibili, pressione e profondità sono correlate linearmente.
- Risposta: **C**. Il numero di cifre significative è compatibile.
- Risposta: A. Le microonde sono onde elettromagnetiche a lunghezza d'onda prossima a 1 cm.
- Risposta: **D**. La traiettoria di un corpo in un campo gravitazionale uniforme è un arco di parabola con asse diretto lungo la verticale. Se il campo gravitazionale è dovuto a una massa concentrata la traiettoria è una conica.
- Risposta: **C**. I principi della dinamica sono solo tre.
- Risposta: **A**. La forza è attrattiva poiché i due campi sono orientati in una direzione di concatenamento, il campo è ortogonale a entrambi i fili.
- Risposta: **C**. Un qualsiasi bipolo (induttanza, capacità, resistenza) posto in serie a un altro è percorso dalla stessa corrente. Viceversa se posto in parallelo a un secondo è sottoposto alla medesima tensione. Resistenze in serie hanno resistenza equivalente pari alla loro somma. Resistenze poste in parallelo hanno resistenza equivalente il cui inverso è pari alla loro somma degli inversi.
- Risposta: **B**. La densità è il rapporto tra massa e volume.
- Risposta: **A**. La potenza elettrica è $V^2/R = (4.5 \cdot 2)^2/90 = \text{circa } 8/9 \text{ Watt.}$

- Risposta: **A**. Una grandezza scalare è definita in modulo e in segno.
- Risposta: **B**. Una radiazione monocromatica è definita dalla sua frequenza.
- Risposta: **D**. L'energia emessa dipende dalla frequenza del suono.
- Risposta: A. Essendo il moto uniforme, il moto della velocità risulta costante, di conseguenza, la velocità angolare è costante.
- Risposta: **B**. La circuitazione della forza d'attrito è sempre diversa da zero quindi non è mai conservativa.
- Risposta: **C**. La resistenza equivalente è 6,6 ohm, la potenza è quindi 21 watt.
- Risposta: A. Il radiante misura l'angolo piano tra due semirette.
- Risposta: **B**. Una mole è un numero di Avogadro di molecole, valutato in funzione del peso molecolare.
- Risposta: A. Il campo elettrico è definito esattamente come il rapporto tra la forza esercitata dal campo è l'entità della carica esploratrice.
- Risposta: A. La potenza è il prodotto scalare tra forza (peso) e velocità (dalla definizione del lavoro), il peso è m · g, la velocità verticale è circa il 2% della velocità orizzontale V.
- 262 Risposta: **B**. Un watt è un joule al secondo.
- Risposta: **B**. L'unità di misura del campo magnetico è il tesla.
- Risposta: A. L'effetto dell'attrito su un corpo si manifesta con una diminuzione di energia cinetica.
- Risposta: **A**. In applicazione del secondo principio della termodinamica l'entropia aumenta sempre.
- Risposta: **B**. Il modulo del campo magnetico può essere calcolato secondo l'espressione

può essere calcolato secondo l'espressione
$$B = \frac{\mu_0 i}{2R} = \frac{4\pi \cdot 10^{-7} \cdot 5 \text{ A}}{2 \cdot 10 \text{ cm}} = 3,14 \cdot 10^{-5} \text{ T}$$

avendo utilizzato la prima equazione di Laplace.

Risposta: **B**. La diversa conducibilità termica induce questa sensazione termica.

- Risposta: A. L'acqua ha la più grande tensione superficiale.
- Risposta: **C**. Se la carica è in moto in direzione non parallela al campo magnetico, si esercitano forze magnetiche.
- Risposta: **B**. La tensione superficiale è la tensione dovuta all'interfaccia del liquido.
- Risposta: **B**. L'equilibrio termico si realizza alla stessa temperatura.
- Risposta: **C**. La diffrazione causa la colorazione azzurra del cielo.
- Risposta: **B**. L'impedenza è data da una funzione di resistenza, capacità e induttanza.
- 274 Risposta: **C**. Una particella scarica non subisce alcuna iterazione con il campo elettrico.
- Risposta: A. L'atomo è sostanzialmente uno spazio vuoto come mostrato dall'esperienza di Bohr.
- Risposta: **E.** Uguaglianza tra energia cinetica e potenziale: $0.5 \text{ m } V_2 = mgh$.
- Risposta: A. Il vettore velocità ruota in modo uniforme.
- Risposta: **A**. Il prodotto volt per ampere definisce una potenza.
- Risposta: **E**. La densità è il rapporto tra massa e volume di un dato corpo.
- Risposta: **A**. Una kilocaloria o grande caloria è pari a 4186 joule.
- Risposta: **D**. L'accelerazione ha le dimensioni di una lunghezza divisa per un tempo al quadrato.
- Risposta: **E**. In applicazione al primo principio della termodinamica il calore è pari al prodotto tra massa, calore specifico e salto termico.
- Risposta: **C**. Il sistema non è isolato, esistono quindi reazioni vincolari.
- Risposta: **A**. Lo spazio è 60 cm, il tempo è t = 0,006 s, l'accelerazione è 9000 ms⁻².
- Risposta: **C**. La distanza percorsa in 0,1 s è 34 m, andata e ritorno di 17 m.

- 286 Risposta: **D**. L'altezza max vale $(V_0 \text{ sen} i)2/g$.
- Risposta: **D**. Il difetto di massa si trasforma nell'energia del legame.
- Risposta: **C**. Avendo la stessa massa, il calore che viene scambiato induce variazioni termiche inversamente proporzionali ai calori specifici.
- Risposta: **C**. Secondo il primo principio calore e lavoro sono grandezze equivalenti e quindi omogenee.
- Risposta: **B**. Le pulsazioni cardiache a riposo sono circa 60 in un minuto primo, ovvero la frequenza è circa di 1 Hz.
- Risposta: **A**. La velocità relativa è la differenza tra le velocità.
- Risposta: B. La Terra è il terzo pianeta in ordine di distanza dal Sole, il più grande dei pianeti terrestri del sistema solare, sia per quanto riguarda la massa sia per il diametro, ed è l'unico corpo planetario del sistema solare adatto a sostenere la vita, almeno tra quelli conosciuti alla scienza moderna Possiede un campo magnetico, che, insieme a una atmosfera composta in prevalenza da azoto e ossigeno, la protegge dalle radiazioni nocive alla vita; l'atmosfera inoltre funziona come scudo contro le piccole meteore, causandone la distruzione per calore da attrito prima del raggiungimento della superficie. Il suo asse di rotazione è inclinato rispetto alla perpendicolare al piano dell'eclittica: questa inclinazione, combinata con la rivoluzione della Terra intorno al Sole, è causa dell'alternarsi delle stagioni.
- Risposta: **C**. A 0 °C, temperatura verso solidificazione dell'acqua, la fase solida, il ghiaccio, presenta una densità inferiore all'acqua.
- Risposta: **A**. La potenza è pari a P = VI, con V = RI quindi $P = RI^2 = 1200 \Omega \cdot (12 \cdot 10^{-3} \text{ A}) = 0.173 \text{W}.$
- Risposta: **B**. Se un vettore è costante, è costante il suo modulo.
- Risposta: **D**. L'energia cinetica è proporzionale al prodotto tra quantità di moto e velocità.
- Risposta: **C**. Il potenziale elettrico è il rapporto tra energia potenziale e carica.
- Risposta: **B**. Il prodotto watt per secondi = joule è un lavoro o energia.

© Ulrico Hoepli Editore S.p.A. Soluzioni e commenti 11

- Risposta: **D**. La lunghezza d'onda è 6000/400 = 15 m, 7,5 m sono π gradi di sfasamento.
- Risposta: **A**. Un anno luce equivale a $9,46 \cdot 10^{12}$ km, la distanza è quindi $28 \cdot 10^{16}$ km, l'accelerazione centripeta vale $-2,4 \cdot 10^{-10}$ m s⁻².
- Risposta: **A**. Il momento di una forza deriva da un prodotto vettoriale tra forza e braccio.
- Risposta: **C**. Se la densità è la medesima la massa è proporzionale al volume.
- Risposta: **C.** I raggi catodici sono prodotti dal catodo, caricato negativamente che emette elettroni.
- Risposta: **A**. Le onde luminose sono onde elettromagnetiche a frequenza elevata.
- Risposta: **A**. Incremento di velocità = accelerazione \cdot tempo = $20 \cdot 5 = 100$ m/s, 360 km/h.
- Risposta: A. L'errore relativo è di circa un punto percentuale.
- Risposta: **C**. L'accelerazione di gravità sulla Terra è di circa 10 m/s².
- Risposta: **A**. Una carica in moto è assimilabile a una corrente che induce un campo magnetico.
- Risposta: **C**. Nel sistema non inerziale le forze si equilibrano lungo l'angolo α, con l'accelerazione tangente all'angolo.
- Risposta: **D**. Nel Sistema Internazionale (SI) l'espressione valida è joule = volt x coulomb, che deriva dalla definizione di potenziale elettrico.
- Risposta: **B**. Un elettrolita produce portatori di carica in una soluzione.
- Risposta: **B**. Il lavoro può essere espresso secondo la seguente formula:

$$L = \frac{1}{2}mv^2 - \frac{1}{2} = mv_0^2$$

dove m è la massa del corpo in questione, v è la velocità iniziale del corpo e v_0 è quella finale. v_0 è il nostro obiettivo, perciò avendo tutti i dati possiamo scrivere

$$v_0 = \sqrt{\frac{\frac{1}{2} mv^2 - L}{\frac{1}{2} m}} = 13,4 \text{ m/s}$$

Risposta: **D**. Se la particella è in moto uniforme e i campi sono costanti esiste una configurazione di equilibrio (effetto Hall).

- Risposta: **D**. La velocità è il prodotto tra velocità angolare e quella periferica.
- Risposta: **B.** Raddoppiando la massa, l'accelerazione si dimezza.
- Risposta: **D**. Per la rifrazione si può scrivere $n_1 \operatorname{sen}\theta_1 = n_2 \operatorname{sen}\theta_2$, dove θ_2 è l'angolo richiesto, quindi essendo n_2 pari a 1 (indice di rifrazione dell'aria) possiamo scrivere $1,33 \cdot \operatorname{sen}45^\circ = 1 \cdot \operatorname{sen}\theta_2$, da cui troviamo che $\theta_2 = 42^\circ$.
- Risposta: E. Le due forze definiscono un piano d'azione su cui giace la risultante che chiude il triangolo delle forze: la risultante deve essere minore della somma delle due forze e maggiore della differenza
- Risposta: **C**. L'espressione che descrive l'effetto Doppler cambia leggermente e diventa:

$$f = \left(350 \frac{330}{330 + 40}\right) = 312 \text{ Hz}$$

- Risposta: **A**. La capacità elettrica è inversamente proporzionale alla tensione.
- Risposta: **D**. Un condensatore in cui la carica immagazzinata costituisce una riserva non nulla di energia.
- Risposta: **D**. L'effetto Joule è comune a tutti i conduttori in presenza di una differenza di potenziale che genera un passaggio di corrente sotto l'azione del campo elettrico sui portatori di carica.
- Risposta: **C**. L'energia cinetica aumenta a scapito dell'energia potenziale.
- Risposta: **B**. Il momento a cui è sottoposto il filo quando passa corrente è $M = K \cdot \theta = 5 \cdot 10^{-9}$ Nm; ora che si conosce è sufficiente utilizzare l'equazione $\tau = ianB_0b = inAB_0$ e fare il rapporto tra le varie grandezze per trovare la corrente

varie grandezze per trovare la corrente
$$i = \frac{\tau}{inAB_0} = 5 \cdot 10^{-8} A$$

- Risposta: **D**. In condizioni stazionarie l'equazione di continuità è valida per qualsiasi fluido.
- Risposta: **B**. Questa lunghezza d'onda appartiene all'ultravioletto.
- 326 Risposta: **C**. Il calore, una forma di energia, misurabile anche in calorie.
- Risposta: **E**. La forza di Lorentz, è ortogonale alla velocità quindi non può compiere lavoro.

- Risposta: **E**. Ciclo frigorifero con rendimento inferiore a uno.
- Risposta: **C**. La densità assoluta e non relativa è il rapporto tra massa e volume.
- Risposta: A. Secondo la legge dei gas perfetti il prodotto pressione volume eguaglia a meno di una costante il prodotto temperatura assoluta e numero di moli: se il primo termine è costante temperatura e numero di moli sono inversamente proporzionali.
- Risposta: **D**. Questo paradosso si sviluppa dall'incompletezza della relatività ristretta dovuto al posizionamento dei diversi sistemi inerziali.

Consideriamo un'astronave che parta dalla Terra nell'anno 3000, che mantenendo una velocità costante v raggiunga la stella Wolf 359, distante 8 anni luce dal nostro pianeta e che appena arrivata, inverta la rotta e ritorni sulla Terra, sempre a velocità v. Di una coppia di fratelli gemelli, l'uno salga sull'astronave, mentre l'altro rimanga a Terra. Nel sistema di riferimento della Terra, l'astronave percorre 8 anni luce in 10 anni nel viaggio di andata, e ne impiega altrettanti nel viaggio di ritorno: essa quindi ritorna sulla Terra nel 3020. Sull'astronave, però, il tempo scorre al 60% del tempo della Terra, quindi secondo l'orologio dell'astronauta il viaggio dura 6 anni per l'andata e altrettanti per il ritorno: all'arrivo, quindi, il calendario dell'astronave segna l'anno 3012. Il fratello rimasto sulla Terra è perciò, dopo il viaggio, di otto anni più vecchio del suo gemello.

- Risposta: **A**. Il prodotto scalare è nullo se due vettori sono ortogonali.
- Risposta: **C**. Per definizione la temperatura di trasformazione solido/liquido a pressione atmosferica dell'acqua corrisponde a 0 °C.
- Risposta: **C**. La frequenza è inversamente proporzionale alla lunghezza d'onda infatti

$$\lambda = \frac{r}{f}$$

quindi se $\lambda_1 = 2\lambda_2$ le frequenze devono avere rapporto inverso e cioè $f_1/f_2 = 1/2$.

- 335 Risposta: C. La forza è massima nel vuoto.
- Risposta: **E**. Quando la tensione di vapore eguaglia la pressione agente sulla superficie libera del liquido.
- Risposta: **B**. Il prodotto forza per velocità (N m/s) è equivalente a una potenza.

- Risposta: **D**. L'impulso di una forza eguaglia la variazione di quantità di moto.
- Risposta: **A.** Sistema adiabatico, uguaglianza tra calore iniziale e finale $8 \cdot 20 + 12 \cdot 60 = 20 \cdot 44$ °C.
- Risposta: A. L'iceberg è costituito da ghiaccio che ha una densità poco inferiore a quella dell'acqua.
- Risposta: **C**. 0,2 (1 + x) = 0,3, quindi 1 + x = 1,5, x = 0,5 kg.
- Risposta: **A**. Siano s lo spazio, a l'accelerazione, t il tempo allora $s = a t^2/2$, essendo t = 1 s, e a circa 9,8 m/s², lo spazio è 4,9 m.
- Risposta: **D**. Una particella elementare fissa genera su particelle egualmente cariche un campo centrale e repulsivo. Quindi la particella descrive una traiettoria iperbolica, dovendo essere una curva conica (conservazione della quantità di moto totale del sistema) aperta.
- Risposta: **C**. Il voltmetro misura la tensione o differenza di potenziale.
- Risposta: **A**. La spinta di Archimede è pari al peso del liquido spostato, proporzionale al volume.
- **346** Risposta: **D**. $0.5\% = 0.005, 0.005 \cdot 200 = 1$ cm.
- Risposta: **C**. L'impulso prodotto dalla forza ha aumentato la quantità di moto della massa *m* di 10 volte.
- Risposta: **D**. La scala Richter misura l'energia trasmessa dai terremoti.
- Risposta: **D**. Il modulo di Young si misura in N/m^2 .
- 350 Risposta: A. Il "tor" è una misura di pressione.
- Risposta: **B**. La temperatura che si realizza è la media pesata delle temperature (2 kg · 20 °C + 1 kg · 80 °C)/ 3 kg = 60 °C), poiché il sistema è adiabatico.
- Risposta: **E**. Fino a quando l'ambiente non è saturo un liquido può evaporare.
- Risposta: **C**. La potenza elettrica è il prodotto tra corrente e tensione (1100/220 = 5 ampere, 220/5 = 44 ohm, in applicazione della legge di ohm).

- Risposta: **B**. Viene misurata in gradi kelvin, ed è rappresentazione della temperatura termodinamica come definita dal secondo principio.
- Risposta: **C**. Micro è il prefisso per definire la milionesima parte; il micron è la milionesima parte di un metro, unità fondamentale.
- Risposta: **B**. Il termometro a mercurio fornisce una misura indiretta (altezza del pelo liquido) della temperatura a causa del fenomeno della dilatazione termica.
- Risposta: **B**. Lo zero assoluto è prossimo a 273,15 °C.
- Risposta: **D**. Il campo elettrico si può misurare in V/m oppure in N/C.
- Risposta: **E**. Il prefisso nano individua la millesima parte del milionesimo.
- Risposta: **C**. La quantità di moto è il prodotto tra massa e velocità.
- Risposta: **A**. Il 1° principio della termodinamica recita $\Delta T = Q L$ dove ΔU è la variazione di energia interna. Poiché $Q = c \ m\Delta T$ ma $\Delta T = 0$ poiché la temperatura è costante possiamo dire che $\Delta T = -L = -2500 \ \text{J}$.
- Risposta: **C**. Lo spazio percorso con accelerazione non nulla è quadratico nel tempo. Inoltre non c'è una direzione preferenziale per la velocità iniziale, quindi la funzione spazio = f (tempo) è simmetrica rispetto alla verticale passante per lo spazio iniziale considerato nullo.
- Risposta: **B**. La forza con la quale si attraggono le due cariche ha espressione

le due cariche ha espressione
$$F = \frac{1}{4\pi\varepsilon} \times \frac{q_1 \cdot q_2}{r^2}$$

Dal momento che tutto rimane costante eccetto le cariche, per raddoppiare la forza è necessario raddoppiare una delle due cariche.

- Risposta: **D**. La riduzione di pressione abbassa la temperatura alla quale la tensione di vapore eguaglia la pressione esterna.
- Risposta: **C**. Il lavoro fatto sul sistema incrementa l'energia interna.
- Risposta: **C**. Essendoci l'aria la resistenza rallenta maggiormente la carta.

- Risposta: **C**. L'energia cinetica ha le dimensioni del lavoro prodotto scalare tra forza e spostamento, quindi pari a una massa moltiplicata per il quadrato di una velocità.
- Risposta: **D**. 1 W per 1 h è pari a $1 \cdot 3600 = 3,6 \cdot 10^3$ J.
- Risposta: **C**. Un qualsiasi bipolo (induttanza, capacità, resistenza) posto in serie a un altro è percorso dalla stessa corrente. Viceversa se posto in parallelo a un secondo è sottoposto alla medesima tensione. Capacità in parallelo hanno capacità equivalente pari alla loro somma. Capacità poste in serie hanno capacità equivalente il cui inverso è pari alla loro somma degli inversi.
- Risposta: **A**. Solo la caloria misura un calore tra le misure elencate.
- Risposta: **B**. 0.2 m^3 sono 200 l; il tempo necessario allo svuotamento è circa 200/0.8 = 250 s.
- Risposta: **E.** La legge di gravitazione vale per tutti i corpi dotati di massa gravitazionale equivalente alla massa inerziale (relatività ristretta).
- 373 Risposta: **E**. 1 kilowatt · 1 h = 10^3 · 3,6 · 10^3 = 3,6 · 10^6 joule.
- Risposta: **D**. L'intensità di corrente che attraversa un conduttore è proporzionale alla tensione e inversamente proporzionale alla resistenza.
- Risposta: **D**. Secondo il secondo principio della dinamica a una forza costante corrisponde una forza costante.
- Risposta: **C**. Dalle leggi di Ohm, la tensione = resistenza \cdot corrente, 100/50 = 2 ampere.
- Risposta: **D**. L'accelerazione si somma algebricamente all'accelerazione di gravità, l'accelerazione diretta parallelamente al piano è (g + b) sena.
- Risposta: **B**. Il prodotto tra calore specifico, massa, salto termico definisce l'energia necessaria.
- Risposta: **A**. Il peso specifico relativo è una quantità dimensionale.
- Risposta: **C**. Il campo elettrico è una grandezza vettoriale, mentre il potenziale è una grandezza scalare.

- Risposta: **E**. Nel processo di fissione nucleare avviene la divisione anche indotta di un nucleo atomico.
- Risposta: **C**. Quando il campo di velocità non varia nel tempo.
- Risposta: **D**. Valutando l'energia $E = V^2 t/R = 4 \cdot 10^{-4} \cdot 10^{-2}/10 = 4 \cdot 10^{-3} \text{ J}.$
- Risposta: A. Una spira percorsa da corrente e un ago magnetico sono fenomeni analoghi, come può essere spiegato da uno studio dei domini magnetici che compongono un materiale magnetizzato (una calamita o un ago).
- Risposta: A. Il campo elettrico generato da una carica puntiforme diminuisce allontanandosi dalla carica con il quadrato della distanza (legge di Gauss, prima legge di Maxwell).
- Risposta: E. Non è possibile poiché tale trasformazione violerebbe il secondo principio della termodinamica.
- Risposta: **C**. Cinque minuti sono 300 secondi, ogni secondo la bicicletta ha percorso in media 10 m.
- Risposta: **B**. Se la forza peso dell'uomo, mentre l'ascensore è in discesa, è di 360 N ciò significa che in quel momento l'accelerazione su di lui è pari a 4.5 m/s^2 , ma di certo l'accelerazione di gravità non è sparita ma viene diminuita dall'accelerazione dell'ascensore. Infatti come si vede dal disegno per avere un'accelerazione risultante pari a 9.8 oltre a quella che "vede" l'uomo deve esserci un'accelerazione propria dell'ascensore che è pari a $9.8 \text{ m/s}^2 4.5 \text{ m/s}^2 = 5.3 \text{ m/s}^2$.
- Risposta: **D**. 250 g = 0,25 kg, la differenza di energia cinetica è 0,5 m V_2^2 0,5 m V_1^2 = 32 J.
- Risposta: **D**. Energia = potenza · tempo = 60 watt · 3600 s = 216 Kj = 51 Kcal.
- Risposta: **D**. In un condensatore, il campo elettrico è pressoché costante.
- 392 Risposta: **B**. I due treni si incontrano dopo 40 chilometri da B.
- Risposta: **A**. Si ottiene da una stima del lavoro svolto per battito (circa 1 joule) e della frequenza cardiaca 70 battiti al minuto.
- Risposta: **A**. Le molecole presentano iterazioni deboli tanto da permettere un modello fluido-

- dinamico descrittivo a sfere rigide che devono le loro iterazioni ai soli urti.
- Risposta: E. Dalle leggi di Maxwell si genera una fem indotta.
- Risposta: **E**. La temperatura durante un trasformazione adiabatica è esprimibile come $T = K V^{1}/V^{\gamma}$

con $\gamma > 1$, quindi se il volume aumenta (un'espansione) il rapporto V^1/V^{γ} diminuisce e di conseguenza anche la temperatura.

- Risposta: **E**. La pressione è il rapporto tra la componente normale di una forza agente su una superficie e l'area della superficie stessa (forza/superficie).
- Risposta: **C**. L'informazione più stringente è che la velocità è derivabile.
- Risposta: E. L'energia potenziale specifica è proporzionale al calore specifico.
- Risposta: A. Gli ultrasuoni sono a frequenza maggiore dell'udibile.
- 401 Risposta: **D**. Il newton misura una forza.
- Risposta: **C**. Il newton e il metro, appartengono entrambi al SI, come qualsiasi loro composizione.
- Risposta: **D**. La forza peso dipende solo dalla massa e dall'accelerazione di gravità.
- Risposta: **B**. Il peso molecolare rappresenta la massa in grammi di una mole di sostanza.
- Risposta: **C.** Possiamo esprimere il comportamento del gas secondo la seguente legge: pV = RT,

poiché p e R sono costanti, se il volume si dimezza così dovrà fare la temperatura pV/2 = RT/2 quindi 127 °C = 400 °K perciò

 $T_{fin} = 400 \text{ K/2} = 200 \text{ K} = -73 \text{ }^{\circ}\text{C}.$

- Risposta: **E**. Il kg(peso) genera una forza di 1 kg per l'accelerazione di gravità = circa 10 N.
- Risposta: **C**. Il moto è uniformemente accelerato, $t_2 = 5/4,9$, v = 9,9 m/s, lo spazio percorso è quindi 39,5 m/s.
- Risposta: E. Il filamento della lampadina emette fotoni in tutto lo spettro con una distribuzione statistica che dipende principalmente dalla temperatura del filamento.

- Risposta: **A**. Le dimensioni del prodotto pressione per volume sono pari a una forza per uno spostamento quindi un lavoro o energia.
- Risposta: **B**. Il funzionamento del termometro si basa sulla dilatazione termica.
- Risposta: **D**. I raggi beta contengono particelle cariche deviate da un campo magnetico.
- Risposta: A. L'energia è la capacità di produrre lavoro.
- Risposta: **A**. dal momento che il prodotto scalare è dato dalla seguente formula

 $v_1 \cdot v_2 = v_{Ix} \cdot v_{2x} + v_{Iy} \cdot v_{2y} + v_{Iz} \cdot v_{2z}$ che sostituendo i valori dei due vettori risulta uguale a

$$v_1 \cdot v_2 = 3 \cdot (-2) + 5 \cdot (-3) + 2 \cdot 5 = -11.$$

- Risposta: **C**. L'impulso è la sola grandezza vettoriale derivando da una differenza di quantità di moto.
- Risposta: **B**. La compressione isotermica è tale per cui in applicazione al primo principio il lavoro fatto sul sistema si trasforma in calore ceduto.
- Risposta: **C**. La spinta di un motore a razzo viene prodotta dalla compressione del getto di gas di scarico sul gas precedentemente espulso, sotto l'effetto della conservazione della qualità del moto.
- Risposta: **E**. Il moto è circolare l'accelerazione è V^2/R , quindi $V = 6.7 \cdot 10^6$ m/s.
- Risposta: **C**. Il coefficiente d'attrito è la tangente dell'angolo di inclinazione.
- Risposta: **D**. Il tempo necessario alla caduta di un satellite è inversamente proporzionale alla resistenza prodotta dall'atmosfera.
- Risposta: **A**. Se il moto è rettilineo, non c'è accelerazione centripeta.
- Risposta: **A**. Se la pressione è costante la relazione tra volume e temperatura è $V/T = \cos t$ ante.
- Risposta: **A**. La potenza è il prodotto tensione corrente, l'energia il prodotto della potenza per un tempo.
- Risposta: **E**. Un pico è il suffisso equivalente a 10^{-15} .

- Risposta: **B**. Finché non si raggiunge l'ebollizione la tensione di vapore è minore della pressione esterna.
- Risposta: **A**. Il volt è per definizione il potenziale pari a un joule diviso per un coulomb.
- Risposta: **B**. Le capacità poste in serie sono sottoposte a una differenza di potenziale somma delle differenze di potenziale.
- Risposta: **B**. La forma della terra è assimilabile a un ellissoide schiacciato ai poli, dunque la distanza diminuisce andando dall'equatore verso il polo, e la forza gravitazionale cresce in conseguenza.
- Risposta: **C**. A 0 °C, temperatura verso solidificazione dell'acqua, la fase solida, il ghiaccio, presenta una densità inferiore all'acqua.
- Risposta: A. La densità relativa è un numero dimensionale definito come il rapporto della massa di una sostanza e una massa di una sostanza presa come riferimento che risiede in egual volume.
- 430 Risposta: A. Peso = massa · accelerazione.
- Risposta: **E**. Il processo è spontaneo, secondo il secondo principio della termodinamica, questo processo è irreversibile con entropia crescente.
- Risposta: **E**. Infatti $A_1v_1 = A_2v_2$, ma se $A_1 > A_2$ significa che per rispettare la legge di costanza della portata risulta $v_1 < v_2$.
- Risposta: **D**. Se temperatura e volume si conservano, anche la pressione si conserva per una data quantità di gas.
- Risposta: **B**. La temperatura è la temperatura media pesata delle due masse.
- 435 Risposta: **D**. 400 = 2/0,05 = 2000/5.
- Risposta: **D**. Il prodotto velocità per area in sezione si mantiene costante conservando il volume che attraversa una qualsiasi sezione.
- Risposta: **A**. Moto uniforme = velocità costante = spazio e tempo direttamente proporzionali.
- Risposta: **D**. La massa di un corpo è una caratteristica intrinseca.
- Risposta: **A**. Se la frequenza è 100 Hz, il periodo è 0,01 sec, quindi la lunghezza d'onda è pari a $500 \times 0,01 = 5$ m.

- Risposta: **C**. Come noto il ghiaccio galleggia sull'acqua, infatti la sua densità è inferiore.
- Risposta: **D**. La lunghezza d'onda è di 0,5 m; 25 cm sono metà di angolo giro.
- Risposta: **C**. L'aria, miscela di più gas comprimibili, diminuisce la sua densità con l'altezza a causa della diminuzione della pressione (riduzione del peso della colonna di fluido con l'aumento dell'altitudine).
- Risposta: A. L'energia cinetica si misura in joule.
- Risposta: **B**. Conoscendo due variabili termodinamiche è possibile calcolare tutte le altre.
- Risposta: **C**. Una perturbazione elastica trasversale, per esempio il terremoto, si può propagare in qualsiasi mezzo che abbia una rigidezza trasversale, generalmente solo nei solidi.
- Risposta: **D**. 1 coulomb/1 secondo equivale a 1 ampere.
- Risposta: **E.** I raggi X sono radiazioni elettromagnetiche, quindi prive di carica.
- Risposta: **B**. L'unità di misura della temperatura assoluta o termodinamica è il grado kelvin in onore al famoso fisico.
- Risposta: A. Frequenza e periodo sono inversamente proporzionali.
- Risposta: **B**. Durante l'ebollizione la temperatura rimane costante a causa del calore latente di ebollizione che eguaglia il calore somministrato.
- 451 Risposta: **E**. Gli ioni sono particelle cariche.
- Risposta: **B**. Poco prima di arrivare a terra l'energia potenziale è la stessa e prossima a zero.
- 453 Risposta: **B**. L'azione di gravità della Terra è ridotta a zero.
- Risposta: **E**. L'energia di ionizzazione si misura in joule.
- Risposta: **B**. Il joule è l'unità di misura dell'energia.
- Risposta: **C**. Partendo dalla legge di Laplace $p = 2\tau/r$ iniziamo a sostituire i dati e trovare la pressione

$$p = \frac{2\tau}{r} = \frac{2 \cdot 7, 3 \cdot 10^{-2} \text{ N/m}}{0,00012 \text{ mm}} = 1216 \text{ Pa}$$

Ora è sufficiente applicare la legge di Stevino $p = \mu gh$

e quindi per trovare l'altezza
$$h = \frac{p}{\mu g} = \frac{1216 \text{Pa}}{1000 \text{kg/m}^3 \cdot 9,8 \text{m/s}^2} = 12,4 \text{ cm}$$

- Risposta: **E**. Entrambi le lenti sono convergenti
- Risposta: **D**. La frequenza temporale si misura col reciproco dell'unità di tempo, l'hertz.
- Risposta: **A**. Per verificare la natura del moto si utilizza il numero di Reynolds $Re = \rho v D/\mu$ dove v è la velocità del fluido, D il diametro del condotto, ρ la densità del fluido e μ la viscosità del fluido; affinché il moto sia laminare il numero di Reynolds deve essere inferiore a 2000. Essendo 1 cm = 0,01 m e 1 cpoise = 0,001 Ns/m se si sostituiscono questi valori nella formula si ottiene:

$$\frac{1000 \text{kg/m}^3 \cdot \nu \cdot 0,02 \text{m}}{0,001 \text{Ns/m}^2} < 2000$$

da cui

$$v < \frac{2000 \cdot 0,001}{0,02 \cdot 1000} = 0,1 \text{ m/s} = 10 \text{ cm/s}$$

- Risposta: **A**. L'accelerazione è il rateo di variazione della velocità nel tempo, ovvero la derivata della velocità nel tempo.
- Risposta: **B**. I metalli condividono una nuvola di elettroni liberi che possono essere espulsi per effetto termoionico (per esempio nell'applicazione del tubo a raggi catodici).
- Risposta: A. Il prefisso giga definisce la scala dei miliardi.
- Risposta: **A**. L'ozono, grazie alla sua struttura chimica poco stabile assorbe le radiazioni ultraviolette.
- Risposta: **D**. Un'automobile percorre 100 km in un'ora andando a 100 km/h, mentre percorre 100 km in mezz'ora a 200 km/h, in tutto percorre 200 km in 1,5 h ovvero alla velocità di 133 km/h circa.
- Risposta: **C**. La costante *R* dipende dalle unità di misura ed è equidimensionale con una capacità termica.
- Risposta: **A**. Il secondo elemento He è stabile singolarmente essendo un gas nobile.

- Risposta: **D**. Il volume è proporzionale alla terza potenza del raggio.
- Risposta: **C**. L'inerzia di un corpo è la sua naturale tendenza a conservare il proprio stato di quiete o di moto rettilineo uniforme.
- Risposta: **C**. La permeabilità magnetica si misura in henry/m.
- Risposta: **B**. L'acqua salata ha una conducibilità elettrica più alta, quindi il collegamento in parallelo di più generatori permette di sviluppare alte potenze sotto l'effetto di correnti intense.
- 471 Risposta: **B**. Il moto è pressoché uniforme.
- Risposta: **E**. La trasformazione isoentropica avviene senza scambi di calore e in modo reversibile, mantenendo quindi l'entropia.
- Risposta: **C**. La capacità elettrica si misura in farad.
- Risposta: **A**. Una carica in quiete non risente di alcun campo magnetico.
- Risposta: **C**. La sequenza alfa, beta, gamma è in ordine crescente di energia di penetrazione.
- Risposta: **D**. La spinta di Archimede è pari al peso del liquido spostato.
- Risposta: **B**. Una trasformazione è adiabatica se non c'è trasporto di calore.
- Risposta: **A**. Il campo di frequenza udibile è 20 hertz $< f < 20\,000$ hertz.
- Risposta: **B**. Il processo è adiabatico quindi il calore del sistema si conserva, calore iniziale $(0 \cdot 1 + 0.5 \cdot 60)$ = calore finale $(1.5 \cdot t)$, t = 20 °C.
- 480 Risposta: A. L'acqua ha un elevato calore specifico e una buona conducibilità termica.
- Risposta: **E**. Il lavoro è dimensionalmente il prodotto di una forza per uno spostamento.
- 482 Risposta: A. La massa totale è il prodotto tra il numero di abitanti e la massa media.
- Risposta: **E**. La velocità del suono dipende effettivamente dal mezzo in cui si propaga; essendo il suono una perturbazione della pressione, la sua velocità di propagazione dipende dal modulo elastico e dalla densità del mezzo.

- Risposta: **B**. Il prefisso nano equivale a un miliardesimo.
- Risposta: **B**. Nel Sistema Internazionale (SI) l'unità di misura della potenza è il watt.
- Risposta: **B**. Il lavoro è il prodotto scalare tra forza e spostamento, pari a 300 J.
- Risposta: A. Un gas non può essere liquefatto per sola compressione diversamente da un vapore, poiché ha una temperatura superiore a quella critica.
- 488 Risposta: **A**. Il prefisso milli definisce un millesimo dell'unità.
- Risposta: **D**. L'energia cinetica media è uguale a $m < v^2 > /2 = 3 kT/2$ ma se le due molecole hanno la stessa temperatura allora hanno anche la stessa energia cinetica media.
- Risposta: **E**. Moto decelerato, t = 3,19 s, v = 31,3 s.
- 491 Risposta: **D**. Il suono ha un carattere ondulatorio.
- Risposta: **E**. Newton definì la legge di gravitazione universale, basandosi sulle leggi di Keplero.
- Risposta: **D**. Aumenta l'effetto di induzione magnetica.
- Risposta: **A**. Il prefisso nano, indicato con la lettera n, indica la miliardesima parte.
- Risposta: A. Le unità coerenti del sistema di unità SI sono il newton e il metro.
- Risposta: **B**. Prendiamo una formula per il moto uniformemente accelerato $v = v_0 + at$ dove v_0 è la velocità iniziale, essendo $v_0 = 0$ l'equazione si riduce a v = at ma $a = \cos t$ perciò il tempo per percorrere i 22 m non dipende dalle masse ma solo dalla velocità che è per definizione v = s/t. Perciò si può concludere che i due oggetti raggiungeranno il suolo nello stesso istante.
- Risposta: **E**. 1000 km/h = 277,7 m/s, accelerazione = $231 \text{ m/s}^2 = 23.6 \text{ g}$.
- Risposta: **E**. La corrente elettrica si misura in ampere.
- Risposta: A. Due condensatori posti in serie hanno una capacità equivalente inferiore alla

più piccola delle due, poiché viene sommata la differenza di potenziale vista ai capi dei condensatori posti in serie.

- Risposta: C. La cinematica studia il moto dei corpi.
- Risposta: E. Il primo principio sancisce l'equivalenza tra calore ed energia.
- Risposta: **D**. La posizione del baricentro del sistema si mantiene poiché non vi sono forze esterne, quindi le due barche si sposteranno in modo tale da mantenere la posizione del baricentro.
- 503 Risposta: A. Si trasforma inizialmente la potenza da CV a watt, 2 CV = 1470 W. Poi si può ricorrere alla seguente legge $P = C \cdot \omega$ dove P è la potenza del motore, C la coppia e ω la velocità angolare. Bisogna ricordare che ω deve essere espressa in rad/s perciò $\omega = 2p \cdot 900/60 = 94.2 \ rad/$ s. Basta sostituire il valore di ω nella prima equazione e si trova il valore della coppia $C = P/\omega = 15,6$ Nm.
- 504 Risposta: C. L'accelerazione provoca un aumento di velocità.
- Risposta: D. La legge di Ohm è generalmente valida per i metalli.
- Risposta: **D**. Il decibel è una misura utilizzata in acustica.
- Risposta: B. Il prodotto pressione per superficie definisce una forza ortogonale alla superficie.
- 508 Risposta: A. Un micron è un milionesimo di unità.
- 509 Risposta: E. Una bilancia posta su una giostra non risente della sua rotazione.
- Risposta: A. La pressione sanguigna si misura solitamente in mmHg o tor.
- Risposta: D. L'accelerazione di gravità è la medesima con medesimo spazio percorso.
- 512 Risposta: **D**. A una superficie minore corrisponde una pressione maggiore.
- 513 Risposta: **C**. Le due resistenze poste in parallelo sono attraversate da correnti inversamente proporzionali all'entità delle due resistenze.
- Risposta: A. La corrente continua è generata dall'accumulatore.

- Risposta: C. L'entropia definita nel secondo principio della termodinamica ha le dimensioni di un calore specifico.
- Risposta: **B**. La resistenza elettrica è il rapporto tra tensione e corrente, si misura in ohm.
- Risposta: **D**. Il calore specifico di una sostanza è la quantità di calore che deve essere somministrata all'unità di massa della sostanza per aumentarne la temperatura di 1 °C, ovvero la quantità di energia termica necessaria a produrre un salto termico unitario per unità di massa.
- Risposta: E. Nessuna delle altre affermazioni è
- Risposta: **D**. Il peso è il modo in cui si esplica l'attrazione terrestre.
- Risposta: C. I tre oggetti si portano in tempi diversi alla medesima temperatura termodinamica.
- Risposta: B. Se chiamiamo l'intensità in un punto senza perdite con I_1 avremo:

$$I_1 - \frac{40}{100}I_1 = 14\frac{W}{m^2}$$

quindi

$$0,6 I_1 = 14 \frac{W}{m^2}$$

e di conseguenza

$$I_1 = 23, 3 \frac{\mathrm{W}}{\mathrm{m}^2}$$

Utilizzando la formula dell'intesità acustica $I_1 = I_1 P/4\pi r^2$ possiamo scrivere che $P = I_1 \cdot 4\pi r^2 = 23.3 \text{ W/m}^2 = 2635 \text{ W}.$

$$P = I_1 \cdot 4\pi r^2 = 23.3 \text{ W/m}^2 = 2635 \text{ W}.$$

- Risposta: **D**. Una perturbazione elastica longitudinale, per esempio il suono, si può propagare in qualsiasi mezzo che abbia una rigidezza longitudinale.
- Risposta: A. La massa di 1 kg ha un peso di 1 kg (peso).
- Risposta: **D**. $s = vt + 1/2 gt^2$, $t = 5 \cdot 10^{-9} \text{ s}, 8 \cdot 10^{14} \text{ m/s}^2.$
- Risposta: C. Si può trasformare l'energia meccanica in elettrica, sfruttando la variazione di flusso magnetico.
- Risposta: B. La componente di un vettore rispetto a una direzione si valuta con il prodotto scalare, ovvero tramite il coseno dell'angolo definito dai due vettori.

- Risposta: **D**. Il kilowatt misura una potenza.
- 528 Risposta: A. Secondo il primo principio della termodinamica il calore è una forma di energia.
- Risposta: **D**. $180 \cdot 3,6 = 648$ km/h.
- 530 Risposta: A. Il filo di fase poiché teoricamente il neutro e la terra dovrebbero essere al potenziale nullo rispetto alla terra fisica (in generale questa è una sicurezza aggiuntiva).
- Risposta: **B**. Pressione = forza/superficie, quindi pressione/forza = 1/superficie.
- 532 Risposta: **E.** Poiché 1 cal = 4,18 J se si sostituisce si ottiene 1000 cal = 4180 J.
- 533 Risposta: C. A parità di tensione la potenza sviluppata è inversamente proporzionale alla resistenza in applicazione delle leggi di Ohm $(V = R \ i, P = V \cdot i = V^2/R).$
- 534 Risposta: E. Il farad è un'unità di misura della capacità.
- 535 Risposta: **B**. Il prodotto tensione corrente definisce una potenza il cui prodotto con il tempo definisce un'energia.
- Risposta: **B**. La pressione è misurabile in pascal ovvero newton/m².
- Risposta: E. Il rendimento è un numero adimensionale.
- 538 Risposta: D. La densità dell'acqua è circa di 1000 kg al m^3 .
- Risposta: A. Densità e peso specifico diminuiscono con l'aumento della temperatura per l'aumento del volume.
- 540 Risposta: **E**. La spinta di Archimede dipende sia dal volume sia dalla densità, ovvero dal peso del liquido spostato.
- Risposta: A. Il termometro utilizza la caratteristica comune dei corpi di dilatarsi sotto l'effetto dell'aumento della temperatura.
- Risposta: **D**. Lo spigolo è doppio, il volume è otto volte maggiore.
- Risposta: **B**. Il fenomeno darebbe vita a un moto perpetuo.

Risposta: **E.** Essendo $\Delta S = mc \ln (T_1/T_2) =$ = -2770,11 è sufficiente sostituire i vari dati per trovare la massa infatti:

$$m = \frac{\Delta S}{c \ln(T_1/T_2)} = \frac{-2770, 11}{4186 \cdot (-0, 13235)} = 5 \text{ kg}$$

- 545 Risposta: A. La luce è una perturbazione del campo elettromagnetico (longitudinale e trasversale).
- 546 Risposta: A. La quantità di calore si può misurare in joule, essendo una forma d'energia.
- Risposta: C. Il calore ceduto dipende tanto dalla massa d'acqua quanto dalla differenza di temperatura fra acqua e ambiente.
- Risposta: **B**. Dalla generazione di onde distrut-
- Risposta: A. Dal terzo principio della dinamica a ogni azione corrisponde una reazione.
- Risposta: A. La differenza di potenziale aumenta poiché viene compiuto lavoro contro il campo magnetico, lavoro che rimane immagazzinato dal condensatore.
- Risposta: A. Il peso specifico è il rapporto tra peso e volume.
- Risposta: E. La quantità di moto si misura in N \cdot s (teorema dell'impulso), o kg \cdot m/s.
- Risposta: A. La temperatura aumenta proporzionalmente al lavoro fatto sul gas.
- Risposta: C. La forza è pari al prodotto massa per accelerazione.
- Risposta: C. In questo caso avendo due masse differenti è necessario considerarle per determinare la temperatura di equilibrio a fine miscelamento $T_{eq} = m_1 T_1 \cdot m_2 T_2 / m_{tot} = 315 \text{ K. Poi possiamo}$ calcolare la variazione di entropia di entrambe le

$$\Delta S_1 = \int_{T_1}^{T_2} \frac{dQ}{T} = \int_{T_1}^{T_2} \frac{mcdT}{T} = mc(\ln\frac{T_1}{T_2}) =$$

$$= 2 \text{kg} \cdot 4,186 \text{J/kgK} \cdot \ln\left(\frac{315}{363}\right) = -1,187 \text{J/K}$$

mentre per l'altra massa d'acqua risulta
$$\Delta S_2 = \int_{T_1}^{T_2} \frac{dQ}{T} = \int_{T_1}^{T_2} \frac{mcdT}{T} = mc(\ln\frac{T_1}{T_2}) = \\ = 3 \text{kg} \cdot 4, 186 \text{J/kgK} \cdot \ln(\frac{363}{315}) = -1,345 \text{J/K}$$

Quindi la variazione di entropia totale risulta $\Delta S = \Delta S_1 + \Delta S_2 = 158 \text{ J/K}.$

- Risposta: E. Supponendo che l'intero peso della leva sia concentrato nel mezzo dell'asta si può dire che in quel punto è applicata una forza pari a $F_{peso} = 30 \cdot 9,8 = 294$ N. Questa forza deve essere bilanciata dalla componente verticale della forza applicata all'estremo della leva; quindi se scriviamo l'equilibrio alla rotazione rispetto all'estremo incernierato $F_{peso} \cdot 0,5 = F \cdot \text{sen60}$ da cui si ottiene che $F = F_{peso} \cdot 0,5/\text{sen60} = 170$ N.
- Risposta: **C**. La forza gravitazionale risulta molto più piccola rispetto all'azione elettrica, poiché il rapporto tra carica massa delle particelle rispetto alle costanti dei due campi risulta favorevole al campo elettrico.
- Fisher Risposta: **D**. La densità può variare a causa della dilatazione termica.
- Risposta: A. Una soluzione di un sale forte aumenta considerevolmente il numero di portatori di carica.
- 560 Risposta: **C**. L'amperometro misura la corrente.
- Risposta: **C**. La pressione esercitata sul fondo dipende solo dall'altezza della colonna d'acqua.
- Risposta: **B**. Il rapporto tra caduta di pressione e lunghezza del condotto.
- Risposta: E. Nel Sistema Internazionale (SI) l'unità di misura del potenziale elettrico è il volt.
- Risposta: **C**. Il rapporto dei periodi è il reciproco della radice quadrata del rapporto delle accelerazioni di gravità, 10 s sulla Terra, 24,8 s sulla Luna.
- Risposta: **D**. La differenza di potenziale si misura in volt.
- Risposta: **C**. Il campo elettrico si misura in V/m.
- 567 Risposta: A. Il lavoro è una grandezza scalare.
- Risposta: **A**. La somma vettoriale delle accelerazioni definisce l'accelerazione A.
- Risposta: **B**. La IV regola del ragionamento sperimentale, enunciata da Newton, pone nel procedimento di induzione generale dai fenomeni i fondamenti della certezza e della verità delle teorie,

che saranno vere sino a quando non saranno smentite dalle verifiche sperimentali.

- Risposta: E. La differenza della quantità di moto eguaglia l'impulso della forza: sono quindi equidimensionali.
- Risposta: **D**. Energia cinetica = $0.5 \text{ m V}^2 = 0.5 \cdot 50000 \cdot (6000/3.6)^2 = 6.94 \cdot 10^{10} \text{ J}.$
- Risposta: A. L'energia meccanica totale si conserva in assenza di attrito, trasformandosi da cinetica a potenziale e viceversa.
- Risposta: **C**. La forza di gravità è proporzionale all'inverso della distanza dal centro: l'aumento di un decimo della distanza diminuisce di due decimi la forza di gravità.
- Risposta: **C**. 72 km/h sono 20 m/s; energia cinetica = lavoro di frenatura, $L \cdot F = m V^2/2$, $L \cdot a = V^2/2$, $a = 400/2/60 = 3,3 \text{ m/s}^2$, $T = (2L/a)^{1/2} = 6 \text{ s}$.
- Risposta: **A**. Essendo t = s/v basta sostituire i due valori dati dal problema

due valori dati dal problema
$$t = \frac{1,67 \cdot 10^5 \text{ km}}{3000 \text{ km/h}} = 55,7 \text{ h}$$

- Risposta: A. Se la vettura è ferma e fissata la trasformazione della quantità di moto è più repentina e genera forze maggiori.
- Risposta: A. Le tre lampadine poste in parallelo consumano e illuminano tre volte tanto.
- Risposta: **A**. La spinta di Archimede è proporzionale alla densità del fluido.
- Risposta: A. L'unico movimento che i suoi punti possono compiere è ortogonale al raggio vettore che li congiunge con il polo fisso.
- Risposta: **D**. L'accelerazione media è il rateo di variazione media della velocità.
- Risposta: **C**. I due treni si incontrano dopo 60 chilometri da A.
- Risposta: **A**. La radiazione ultravioletta ha frequenza maggiore della luce visibile, avendo un'energia maggiore.
- Risposta: **D**. Moto verticale uniformemente accelerato, t = 0.49 s, mentre il moto orizzontale è uniforme, Vx = 3.03 m/s.

- Risposta: **D**. L'energia o il lavoro viene misurata in joule.
- **8.** Risposta: **B.** Il calore non è una grandezza fisica.
- Risposta: **B**. In applicazione delle leggi sulla gravitazione il rapporto tra le forze è $8 \cdot 10^6$.
- Risposta: A. Una soluzione di un sale in acqua produce un aumento delle forze di legame tale da produrre un innalzamento della temperatura di ebollizione (innalzamento ebullioscopico).
- 588 Risposta: E. Non esiste effetto opposto.
- Risposta: E. L'attrito genera un'azione dissipativa che dissipa parte dell'energia totale del corpo.
- Sisposta: **D.** Lavoro = $\frac{1}{2} \cdot 2 \cdot (6^2 4^2) = 20$ joule.
- Risposta: **D**. La prima legge di Newton, primo principio della dinamica, afferma che un corpo non soggetto a forze esterne permane nel suo stato di quiete o di moto rettilineo uniforme.
- Risposta: **A**. La variazione della posizione del punto nel tempo al tempo t_0 , è la velocità istantanea al tempo t_0 .
- Risposta: **B**. La posizione varia linearmente nel tempo in un moto uniforme.
- 594 Risposta: **C**. Cinque protoni ed elettroni.
- Risposta: **C**. Il potere di risoluzione è la minima distanza fra due punti che si possono osservare come punti separati, ovvero la minima distanza risolvibile.
- Risposta: **E**. La forza maggiore è pari a circa 2 $kgf \cdot 10000 \text{ cm}^2 = 2 \cdot 10^5 \text{ N circa}.$
- Risposta: **B**. In montagna, sotto l'azione dell'abbassamento della pressione, l'acqua bolle a una temperatura inferiore alla temperatura di ebollizione al livello del mare, assunta pari a 100 °C.
- Risposta: **B**. Due resistenze poste in serie hanno come equivalente la somma delle due R_{serie} = 800 Ω + 700 Ω = 1500 Ω . Il parallelo tra R_{serie} e la resistenza da 1500 Ω dà una risultante pari a

$$\frac{1}{R_{tot}} = \frac{1}{1500} + \frac{1}{1500} = \frac{2}{1500}$$

da cui R_{tot} 750 Ω

- Risposta: **A**. Si può assumere un moto uniformemente accelerato, ottenendo un'accelerazione di $1.8 \cdot 10^{15}$ m/s², e una forza relativa di $1.6 \cdot 10^{-15}$ N.
- Risposta: **C**. A e B hanno la stessa velocità verticale, raggiungono la stessa altezza.
- Risposta: A. Il lavoro è negativo poiché è fatto a favore del campo gravitazionale.
- Risposta: **C**. La densità dell'acqua è di 1000 kg/m³; basta moltiplicarla per 13,6 e si ottiene quella del mercurio.
- Risposta: **B**. Il teorema di Bernouilli è un teorema di conservazione dell'energia applicabile laddove l'energia si conserva.
- Risposta: **B**. Aumentando la pressione e con temperature inferiori a quella critica.
- Risposta: **D**. Per la conservazione della quantità di moto mv = (m + 2m) v/3.
- Risposta: **D**. Producono una rotazione pura se non agiscono sulla medesima retta d'azione.
- Risposta: **C**. In conseguenza al primo principio della termodinamica il calore e l'energia sono grandezze omogenee misurate in joule.
- Risposta: E. L'unica unità di misura della pressione tra quelle elencate è l'atmosfera.
- Risposta: **D**. La carica elettrica si misura in coulomb.
- Risposta: **C**. Il sapore non è una grandezza fisica perché non esiste un'unità di misura.
- Risposta: **A**. Trasformiamo inizialmente la frequenza in Hz f = 100/60 = 1,67 Hz; per conoscere la velocità del punto posto a 20 cm dall'asse di rotazione è sufficiente moltiplicare la frequenza per $2\pi r$, $v = f \cdot 2\pi r = 2,1$ m/s. Questo perché è noto che il corpo compie 1,67 giri al secondo ma per trovare la velocità tangenziale è necessario moltiplicare la frequenza per la traiettoria che il punto percorre, che è la circonferenza su cui si trova. Dopo aver trovato la velocità tangenziale del punto, si utilizza la seguente formula per trovare l'accelerazione

$$a = \frac{v^2}{r} = \frac{(2, 1 \text{ m/s})^2}{0.2 \text{ m}} = 22 \text{ m/s}^2$$

Risposta: **B**. A parità di tensione di alimentazione, per diminuire la potenza è necessario aumentare la resistenza con il collegamento in serie.

- Risposta: E. Watt, joule, pascal sono unità di misura derivate dal Sistema Internazionale (MKSA).
- Risposta: E. Diminuisce di un fattore 4, essendo la forza inversamente proporzionale al quadrato della distanza.
- Risposta: **D**. Se l'angolo è di 20° si ha un'accelerazione di 3,57 ms⁻².
- Risposta: **A.** Lavoro = forza · spostamento, $9/3, 6 \cdot 60 \cdot 20 = 30\,000$ joule.
- Risposta: **D**. 10 cm³ d'acqua pesano 10 g, sono $10/18 \times 6.06 \cdot 10^{23}$ molecole.
- Risposta: **B**. Il prefisso milli, indicato con la lettera m, indica la millesima parte.
- Risposta: **B**. Se l'uomo scendesse senza paracadute la sua accelerazione sarebbe di 9.8 m/s^2 mentre in realtà l'uomo possiede solo un'accelerazione pari a 0.8 m/s, questo significa che un parte della forza peso è sostenuta dal paracadute e questa è pari alla tensione del filo T = 70 (9.8 0.8) = 360 N.
- Risposta: **D**. Il fenomeno della diffusione della luce consiste nell'attenuazione della luce dovuta a fenomeni di diffusione in un mezzo.
- Risposta: **C**. La temperatura di fusione del ghiaccio per definizione è pari a 0 °C.
- Risposta: **D**. I metalli hanno una conduzione più elevata perché gli elettroni di conduzione sono liberi permettendo una maggiore conduzione di energia cinetica.
- Risposta: **C**. 76 cm d'acqua sono 760 newton/ m².
- Risposta: **D**. La resistenza è una caratteristica intrinseca di un conduttore di date caratteristiche geometriche.
- 625 Risposta: **B**. $3000 \cdot 2 = 6000$, ovvero 6E3 m².
- Risposta: **E.** Essendo: $R = \rho \frac{l}{S} = \rho \frac{l}{r^2 \cdot \pi}$

Se l aumenta di un fattore 4, affinché $l = \cos t$ è sufficiente che r aumenti di un fattore 2 poiché è elevato al quadrato.

Risposta: **B**. L'erg misura il lavoro nel sistema CGS.

- Risposta: E. L'energia cinetica è direttamente proporzionale alla temperatura: la temperatura di 27 °C corrisponde a 300K, a 150 K l'energia cinetica media risulterebbe dimezzata.
- Risposta: A. Il tempo di percorrenza aumenta sia se il vento spira da est che da ovest.
- Risposta: **E**. La completa conversione del calore in lavoro è in contrasto con il secondo principio della termodinamica.
- Risposta: **C**. La costante di Planck ha le dimensioni di un'energia per una lunghezza (principio di indeterminazione).
- Risposta: **D**. Un trasformatore necessita di una corrente alternata.
- Risposta: **B**. La temperatura si misura in gradi kelvin.
- Risposta: **D**. L'accelerazione è sempre diretta verso il basso in direzione verticale.
- Risposta: **B**. Per calcolare il rendimento è necessario valutare il rapporto tra effetto utile (calore necessario prodotto tra capacità termica e salto termico = $4200 \cdot 10 = 42000 \text{ J}$), e spesa (potenza termica per tempo trascorso $500 \cdot 105 = 52500 \text{ J}$ introdotti), il valore è dell'80%.
- 636 Risposta: A. Peso = $massa \cdot accelerazione$.
- Risposta: **D**. L'energia immagazzinata è data dalla metà del prodotto carica e potenziale, poiché carica e potenziale crescono in ragione lineare in un condensatore.
- Risposta: **E**. Per la comodità di avere un sistema che ritorni nella condizione iniziale compiendo un lavoro netto non nullo (circuitazione della forza attiva diversa da zero).
- Risposta: **B**. Le onde sonore sono prive di polarizzazione perché longitudinali.
- Risposta: **B**. La densità rapporto tra massa e volume si misura in kg/m³.
- Risposta: **C**. Nel collegamento in parallelo, la resistenza equivalente è sempre minore della minore delle resistenze.
- Risposta: **A**. I conduttori avendo cariche libere non possono essere elettrizzati, paradosso elettrico del campo all'interno di un conduttore.

- Risposta: **D**. La forza di Lorentz induce una traiettoria circolare.
- Risposta: **C**. Gli infrasuoni sono a frequenza minore dell'udibile.
- Risposta: **A**. 120 battiti al minuto sono 120/60 al secondo e 1 millilitro = 1 cm^3 , $40 \cdot 120/60 = 80 \text{ ml/s}$.
- Risposta: **A**. Si osserverebbe l'apparente rotazione del piano di oscillazione del pendolo da Est verso Ovest di 360°.
- Risposta: **C**. Un'espansione isoterma richiede calore.
- Risposta: **D**. La forza elastica è conservativa poiché esiste un potenziale e i materiali elastici sono generalmente tali da non mantenere alcuna configurazione deformata in assenza di una forza.
- Risposta: **E**. Il cambiamento di fase dell'acqua liquido/solido corrisponde a un aumento di volume specifico (reciproco della densità).
- Risposta: **B**. 120 m percorsi a 12 m/s, richiedono 10 s, ovvero 50 m.
- Risposta: **E**. Il lavoro fatto sul campo elettrico si esprime in joule.
- Risposta: **C**. Il secondo principio sancisce l'impossibilità di trasformare tutto il calore in lavoro utile, dovuto alla crescita irreversibile dell'entropia.
- Risposta: **B**. La somma vettoriale delle forze giace lungo la diagonale di un quadrato di lato paria a 100 N, la risultante vale quindi 141 N.
- Risposta: **B**. Il secondo principio della termodinamica esclude la possibilità di trasformare integralmente il calore in lavoro.
- Risposta: **D**. Cariche elettriche fisse non sono influenzate dai campi magnetici e viceversa.
- Risposta: **A**. Per la riflessione l'angolo non cambia perciò è uguale a 30° mentre per la rifrazione si utilizza la relazione $n_1 \operatorname{sen} \theta_1 = n_2 \operatorname{sen} \theta_2$ da cui $\theta_2 = 22^\circ$.
- Risposta: **C**. Il prodotto carica per potenziale è una misura dell'energia.
- Risposta: **C**. La massa di 2 kg ha una forza peso pari a $F_{peso} = M \cdot g = 2 \cdot 9.8 = 19.6$ N, questa

però non è la forza con cui la massa andrà a impattare con la molla, infatti la massa si muove su un piano inclinato perciò $F = F_{peso} \cdot \text{sen}30 = 9,8 \text{ N}$. Se moltiplichiamo questa forza per lo spazio che percorre prima di incontrare la molla troviamo il lavoro che la massa svolgerà sulla molla in seguito all'urto $L = F \cdot s = 9,8 \cdot 4 = 39,2 \text{ J}$. Il lavoro immagazzinato dalla molla è anche esprimibile attraverso l'equazione $L = 0,5 \cdot K \cdot x^2$, perciò in questo modo posso trovare la compressione della molla

$$x = \sqrt{\frac{L}{0.5 \cdot K}} = 0.88$$

- Risposta: **E**. L'azione delle forze dissipative è tale sempre da diminuire l'energia totale di un sistema in moto.
- Risposta: A. La forza letta dipende anche dalla densità.
- Risposta: **D**. La composizione dei due moti definisce un'elica o elicoide.
- Risposta: **E**. Il tempo impiegato ad arrivare a terra è indipendente dalla massa.
- Risposta: E. L'indice di rifrazione del vetro è 1,6, e questo è il rapporto delle velocità della luce nei due mezzi considerati, quindi la deviazione avviene in seguito a una variazione di velocità.
- Risposta: **B**. L'unità di misura della potenza è il 1 watt = 1 J/1 s = 1 N 1m/s.
- Risposta: **A.** Le dimensioni del prodotto $h \cdot f$ sono proprie dell'energia.
- Risposta: **D**. Nel punto medio il campo elettrico è nullo per ragioni di simmetria.
- Risposta: **D**. Il momento di una coppia di forze è pari al prodotto della forza per il suo braccio.
- Risposta: **A**. 35 km/h/3,6 = 9,7 m/s, se R = 30 m la forza d'attrito e centrifuga si eguagliano.
- Risposta: **B**. Il calore totale si conserva: il calore iniziale è pari a 30 kcal, la massa finale è di 1,5 kg quindi la temperatura finale è 20 °C.
- Risposta: **E.** Forza = massa · accelerazione = $3 \cdot (9.8 + 2) = 35.4 \text{ N}.$
- Risposta: A. La lunghezza d'onda è la distanza minima tra due punti sempre in fase tra di loro.
- Risposta: **E**. La capacità di un condensatore si può esprimere come

$$C = \varepsilon \frac{d}{A}$$

Se vogliamo che questo termine rimanga costante in seguito alle variazioni subite da d e A, essendo ε una costante, è necessario che d e A aumentino dello stesso ordine di grandezza. Quindi se d raddoppia lo stesso deve fare A.

- Risposta: A. Se l'energia potenziale è minima il sistema non può produrre delle variazioni che vadano a scapito dell'energia potenziale.
- Risposta: **B**. Il principio di conservazione dell'energia sancisce l'equivalenza tra lavoro, energia e calore.
- Risposta: E. La lunghezza d'onda si esprime come:

$$\lambda = \frac{v}{f} = \frac{340 \text{ m/s}}{680 \text{ Hz}} = 0.5 \text{ m}$$

- Risposta: **E**. L'aria è il mezzo in cui il suono si propaga più lentamente.
- Risposta: **B**. Se la pressione diminuisce la temperatura di ebollizione diminuisce, poiché la temperatura a cui la tensione di vapore eguaglia la pressione diminuisce.
- 678 Risposta: **B**. La massa è concentrata nel nucleo.
- Risposta: **B**. I due treni si incontrano dopo 60 minuti.
- Risposta: A. In applicazione del primo principio il lavoro, in assenza di calore, eguaglia la differenza di energia interna.
- Risposta: **C**. Il barometro misura la pressione atmosferica.
- Risposta: **C**. La prima misura è compatibile con il livello di precisione, sensibilità, dello strumento.
- Risposta: A. Sotto l'azione della forza peso un grave subisce un'accelerazione costante lungo la direzione del campo gravitazionale descrivendo quindi una parabola.
- Risposta: **C**. La forza elettrica si genera fra cariche elettriche.
- Risposta: **A**. Forza centrifuga = mV^2/R = 6 · 10⁻³ ms⁻².

- Risposta: A. In applicazione al secondo principio applicato al sistema, in assenza di forze esterne la quantità di moto totale si conserva.
- Risposta: **C**. La velocità cresce linearmente nel tempo.
- Risposta: **B**. I poli opposti si attraggono, ci sono quindi due sole posizioni di equilibrio stabile, due di equilibrio instabile.
- Risposta: **C**. L'energia cinetica si misura in kg m^2/s^2 per unità di massa, l'unità di misura è m^2/s^2 .
- Risposta: A. La temperatura di 157 °C corrisponde a 430 K.
- Risposta: **E**. Dal secondo principio della dinamica forza = massa · accelerazione.
- Risposta: **D**. Perché la tensione di vapore eguaglia la pressione atmosferica a temperatura più bassa.
- Risposta: A. È sempre possibile trasformare l'energia in calore, viceversa solo una parte del calore può essere trasformato in energia.
- Risposta: **C**. Se la traiettoria è curva l'accelerazione sarà centripeta.
- Risposta: **E**. Il poise misura la viscosità dinamica.
- Risposta: **D**. Le radiazioni beta, sono particelle cariche (elettroni e positroni), quindi dotate di carica. Nel loro moto sono deviate da un campo magnetico.
- Risposta: A. Il prodotto della pressione per il volume di un gas ideale è proporzionale alla temperatura termodinamica e quindi alla energia cinetica.
- 698 Risposta: **D**. Un millilitro è un centimetro cubo.
- Risposta: **C**. Le linee di forza del campo elettrico sono chiuse se il campo elettrico è generato dal fenomeno dell'induzione magnetica, poiché solo in questo caso le linee di forza potrebbero circuitare una superficie su cui agisca l'induzione magnetica.
- 700 Risposta: **B**. Il vetro risulta essere indistinguibile.

- Risposta: **D**. I tempi parziali sono 60 s e 24 s, lo spazio percorso è 144 m, la velocità media è 1,71 m/s.
- Risposta: **D**. Il secondo principio della termodinamica definisce tra gli altri l'impossibilità di trasferire spontaneamente del calore da un corpo freddo a uno caldo poiché questa trasformazione ridurrebbe entropia totale del sistema.
- 703 Risposta: **E**. Poiché s = 7,2 m, t = 1,44 s e 6,93 m/s² quindi v = 10 m/s.
- Risposta: **C**. La massa si misura chilogrammi (kg) massa.
- Risposta: **B**. In applicazione al primo principio della dinamica, un corpo prosegue nel suo moto rettilineo uniforme se non soggetto ad alcuna forza, o sotto l'azione di un campo di forze a risultante nulla.
- Risposta: **E**. La radioattività è l'emissione di radiazioni dal nucleo di alcuni atomi.
- Risposta: **B**. Una massa di dieci chili ha un peso di dieci chilogrammi forza, quindi di circa 100 newton. Il lavoro necessario è quindi di circa 1000 joule.
- 708 Risposta: **A**. $152/2 = 10 \cdot L$, L = 11,3 m D t = (L/10)1/2.
- 709 Risposta: **A.** Velocità di 7,2 km/h = 2 m/s $(2 \cdot 3600 = 7200)$, potenza = forza · velocità = $2 \cdot 20 = 40$ W.
- 710 Risposta: **B**. Le due quantità sono in quadratura.
- Risposta: **A**. Tutte e tre sono opportunamente delle potenze.
- Risposta: **D**. Il rapporto delle forze è l'inverso del rapporto dei bracci essendo il prodotto forza e braccio costante.
- Risposta: **E**. Tensione e corrente sono sufficienti per definire in modo univoco la potenza dissipata.
- Risposta: **C**. Di tre in tre, milli, micro, nano, pico.
- Risposta: **B**. Infatti, utilizzando le 2 formule riguardati il moto uniformemente accelerato, possiamo scrivere $v = v_0 + at$ e $s = s_0 + v_0t + at^2/2$ dove v_0 è la velocità iniziale, s_0 lo spazio iniziale e a

l'accelerazione. Se sostituiamo i valori nella prima equazione troviamo $v = v_0 + at = 20 \text{ m/s} + a \cdot 20 \text{ s}$, da cui si ottiene $a = -1 \text{ m/s}^2$; conoscendo l'accelerazione possiamo inserirla nell'equazione del moto uniformemente accelerato e trovare lo spazio percorso dalla locomotiva

$$s = s_0 + v_0 t + a t^2 / 2 =$$

= 0 + 20 m/s · 20 s + 0,5 · (-1 m/s²) · 400 s
= 200 m.

- Risposta: **B**. Le frequenze delle onde elettromagnetiche portanti i due segnali sono diverse poiché è diversa la frequenza caratteristica del segnale trasmesso.
- Risposta: **D**. Il suono, onda meccanica longitudinale, si propaga più velocemente nei solidi dove il rapporto tra rigidezza longitudinale e densità è il più alto.
- Risposta: **B**. Gli isotopi di una data sostanza hanno ugual numero di protoni ed elettroni, ma diverso numero di neutroni.
- Risposta: **D**. Essendo il campo conservativo la variazione di energia potenziale viene compensata dalla variazione di energia cinetica.
- **720** Risposta: **D**. Le dimensioni sono di uno spazio fratto il quadrato di un tempo.
- Risposta: **B**. La gittata è proporzionale al prodotto (velocità orizzontale $\cos i$, per tempo di caduta $2 \sin i$) = $2 \sin i \cdot \cos i$ = $\sin 2i$, che è massimo per l'inclinazione di = 45° .
- Risposta: **D**. Un cubo di lato pari a 30 cm, contiene 27 litri, se il peso è di 30 kg la densità è circa 1,1 kg/litro.
- Risposta: **A**. Il lavoro è il prodotto tra forza e spostamento.
- Risposta: **B**. Solo la seconda affermazione è corretta.
- Risposta: **C**. La massa è una grandezza intrinseca di un corpo.
- Risposta: **C**. La forza esercitata dal campo magnetico *B* su un filo rettilineo attraversato da una corrente *I* giace su un piano ortogonale a entrambi.
- Risposta: **D**. L'energia potenziale (prodotto tra carica e potenziale) è identica.
- 728 Risposta: **D**. Rapporto energetico $1600/2 \text{ (m/s)}^2/(1600\text{m} \cdot 10 \text{ m/s}) = 1/20.$

Risposta: **C**. Sono 2 le forze che si oppongono a quella di 40 kgf: quella di peso pari a Fm = 50 kgf · sen30 = 25 kgf e quella di attrito $F_{att} = N \cdot f = 50$ kgf · cos $30 \cdot f$ è sufficiente eguagliare le 3 espressioni per trovare il coefficiente d'attrito

per trovare il coefficiente d'attrito
$$f = \frac{F - F_m}{F_{att}} = \frac{40 - 25}{43,3} = 0,35$$

- Risposta: **E**. Il rendimento si esprime come $\eta = P_0/P_{spesa} = 2/20 = 10\%$.
- Risposta: **B**. I lavori è il prodotto scalare tra forza e spostamento, pari a 600 J.
- Risposta: E. Un motore in generale ha un rendimento inferiore all'unità ed esso dipende dalla temperatura delle sorgenti di energia. Nel caso particolare di un motore elettrico questo rendimento è molto prossimo a uno ma inferiore.
- Risposta: **C**. Il baricentro è il punto di applicazione delle forze dovute alla massa.
- Risposta: **B**. Il potenziale elettrico si misura in volt.
- Risposta: **C**. La quantità di moto è il prodotto della massa per la velocità di un corpo.
- Risposta: **C**. Se le resistenze sono sottoposte alla stessa differenza di potenziale esse sono in parallelo.
- Risposta: **C**. Velocità e accelerazione sono in quadratura nel moto armonico.
- Risposta: **A**. Il periodo di oscillazione è il reciproco della frequenza di oscillazione.
- Risposta: A. Il flusso di induzione magnetica si misura in weber.
- 740 Risposta: **D**. Il rendimento è una quantità adimensionale.
- Risposta: **C**. Sulla massa di 1 kg agisce una forza peso di 1 kg peso = 9,8 N.
- Risposta: **A**. La forza centrifuga vale $2.2 \cdot 10^{-10} \cdot 2 \cdot 10^{30} = 4.4 \cdot 10^{20} \text{ N}.$
- Risposta: **B**. Accelerazione è spostamento sono proporzionali e in opposizione di fase.
- Risposta: **c**. 1 kcal/K kg è il calore specifico dell'acqua pura alla temperatura media di 15 °C dovuta alla definizione di caloria.

- Risposta: **D**. Quando tensione e corrente sono direttamente proporzionali.
- Risposta: **D**. Se il liquido è pressoché incomprimibile, la pressione esercitata su una qualsiasi area è pari al peso della colonna di liquido secondo il noto teorema di Torricelli.
- Risposta: **C**. I raggi X sono radiazioni elettromagnetiche, infatti non vengono deviati da alcun campo.
- Risposta: **B**. Le prime tre grandezze sono omogenee tra loro.
- Risposta: A. L'errore commesso sulla misura indiretta è maggiore delle cifre significative e questo è un errore.
- Risposta: **C**. La forza centripeta non fa lavoro perché è ortogonale al moto, quindi il prodotto scalare forza per spostamento è nullo.
- Risposta: **A**. Il prodotto della forza per la velocità definisce una potenza.
- 752 Risposta: **C**. Nel punto più alto l'energia cinetica è nulla.
- Risposta: **B**. L'energia nelle varie forme si conserva.
- Risposta: A. Il peso di un corpo è una grandezza che dipende sia dalle caratteristiche del corpo sia dalla sua posizione.
- Risposta: **A**. Il periodo è il reciproco della frequenza.
- Risposta: **D**. In trenta minuti ha percorso 25 km, 50 in un'ora.
- 757 Risposta: **D**. Il risultato dipende dal fatto che il sistema è adiabatico.
- 758 Risposta: E. Un gas si distingue da un vapore, poiché esso si trova a una temperatura superiore alla temperatura critica quindi per liquefarlo è necessario sottrarre calore per portarlo a una temperatura inferiore alla temperatura critica.
- 759 Risposta: A. La temperatura e la velocità quadratica media sono direttamente proporzionali.
- Risposta: **B**. Il lavoro è il prodotto scalare della forza per lo spostamento.

- Risposta: A. Il potenziale è il medesimo, a causa dell'assenza di campo elettrico, o del paradosso dei conduttori (se vi fosse un campo i portatori di carica si muoverebbero in modo tale da annullarne l'effetto Faraday).
- Risposta: **D**. 80 kg forza sulla Terra sono circa 800 N.
- Risposta: **B**. Un nanogrammo è un millesimo di microgrammo.
- Risposta: **D**. Accelerazione centrifuga = $V^2/R = 2.4 \cdot 10^3 \text{ ms}^{-2}$.
- Risposta: **B**. Le forze dissipative assorbono l'energia totale del sistema.
- Risposta: **c**. Secondo la legge di Ohm, a parità di resistenza e di differenza di potenziale la corrente che attraversa due conduttori è la stessa.
- Risposta: **D**. La trasformazione isobara avviene a pressione costante.
- Risposta: **B**. Il calore latente di fusione è il calore che deve essere fornito durante la trasformazione di fase.
- Risposta: A. Il campo è indipendente dalla distanza poiché le superfici equipotenziali si estendono all'infinito (rapporto di infiniti).
- Risposta: **A**. La soluzione si diluisce aumentando la temperatura di congelamento.
- 771 Risposta: A. La pressione esercitata dipende dalla somma delle pressioni parziali.
- Risposta: **A**. Una soluzione di un sale in acqua produce un aumento delle forze di legame tale da produrre un innalzamento della temperatura di ebollizione (innalzamento ebullioscopico).
- 773 Risposta: **A**. La massa è invariate.
- Risposta: A. Una leva equilibra tre forze, due forze agenti e una reazione vincolare.
- Risposta: **C**. L'energia cinetica non può essere negativa.
- Risposta: **B**. La tensione iniziale è 10^{-6} F/ 10^{-5} C = 0,1 volt, la resistenza è 10 ohm, la corrente 10E-2 A.
- Risposta: **A**. L'acqua presente nel ghiaccio occupa lo spazio che le compete una volta che il

- ghiaccio si è liquefatto: il sistema è isotermo quindi non vi è dilatazione termica.
- Risposta: A. Il moto armonico semplice è il moto proprio di un oscillatore in cui l'accelerazione e lo spostamento sono proporzionali e contrari).
- Risposta: **E**. Nessuna delle risposte precedenti è corretta.
- 780 Risposta: **D**. 180 km/100 km/h = 1,8 h 1h 48 min
- Risposta: **D**. 1200 giri / min = 72 000 giri all'ora, velocità = spazio/tempo = $(2 \pi 0.6 \cdot 72000)/h = 43.2 \text{ km/h}.$
- Risposta: **B**. L'uranio ha il peso atomico maggiore.
- Risposta: **D**. Poiché l'aria è un fluido comprimibile la densità diminuisce esponenzialmente con l'altezza.
- 784 Risposta: **D**. A causa dell'atmosfera esso sublimerà durante la caduta.
- Risposta: **C**. L'intensità di carica è proporzionale alla variazione nel tempo di particelle che cambiano stato di ossidazione depositandosi.
- Risposta: **D**. L'afelio è il punto di massima distanza di un corpo, pianeta, asteroide, satellite ecc., dal Sole e sulla Terra si verifica il 4 luglio. Per analogia, viene così chiamato anche l'analogo punto di massima distanza per un pianeta o una stella orbitanti attorno a un'altra stella. Si parla anche, genericamente, di apoastro o, con riferimento alla Terra, di apogeo. La posizione angolare dell'afelio sull'orbita è praticamente fissa, escludendo il caso di effetti relativistici in presenza di grandi masse vicine, che danno luogo a un moto di precessione dell'orbita (per esempio orbita di Mercurio). Il punto di minima distanza dal Sole è chiamato invece perielio. Durante l'afelio la velocità orbitale è più bassa mentre aumenta durante il perielio.
- Risposta: **C**. La somma vettoriale delle forze è pari a 5 newton, che applicata a un corpo con massa pari a un chilogrammo produce un'accelerazione di 5 ms⁻².
- Risposta: **C**. La costante elastica di una molla rimisura in N/m, ed è la forza generata da un'elongazione unitaria.

- Risposta: **B**. Il calore specifico è il calore necessario per elevare di un grado una massa unitaria.
- Risposta: **D**. Il primo principio è valido per qualsiasi sistema termodinamico.
- Risposta: **A**. Le due unità di misura newton/ coulomb e volt/m misurano entrambe il campo elettrico.
- Risposta: **A**. Il momento di una forza è una grandezza vettoriale.
- 793 Risposta: **B**. L'erg misura l'energia nel sistema CGS.
- Risposta: **E**. Applicando la conservazione della portata al condotto convergente otteniamo che la velocità aumenta percorrendo il condotto, e di conseguenza la pressione diminuisce.
- Risposta: A. Dall'equazione dei gas perfetti se la temperatura si conserva, anche il prodotto pressione volume si conserva, se il volume raddoppia il volume dimezza.
- Risposta: **C**. La somma di forze compie il lavoro precedentemente definito su C.
- Risposta: **C**. Un ampere è un coulomb al secondo.
- 798 Risposta: **C**. per definizione.
- Risposta: A. Questo fenomeno è dovuto alla tensione superficiale.
- Risposta: **C**. Solo la misura del primo è significativa con lo strumento quindi attendibile.
- Risposta: **A**. Energia cinetica = $mv^2/2 = 0.5 \cdot 4 \cdot 4 = 8$ joule.
- Risposta: A. Il lavoro di una forza costante e uno spostamento è pari al prodotto scalare dei due vettori.
- Risposta: **D**. Infatti per la legge di Laplace $\Delta p = 2\tau/R$.
- 804 Risposta: A. Per definizione.
- Risposta: **B**. Il campo elettrico è massimo nel vuoto, in qualsiasi mezzo materiale l'entità diminuisce con diminuzione della velocità della luce.

- Risposta: A. Il processo di fusione nucleare consiste nell'unione di due nuclei.
- Risposta: **B**. Il calore si sposta spontaneamente dal corpo caldo a quello freddo.
- Risposta: **C**. Se si sviluppa l'equazione riguardante l'equilibrio alla rotazione rispetto al fulcro centrale si ottiene che $F_1/3 = 2F_2/3$ che semplificata risulta $F_1 = 2F_2$.
- Risposta: A. L'espansione isobara fa compiere lavoro a un sistema.
- Risposta: **B**. La velocità assoluta è 2,5 7,2/3,6 m/s = 0,5 m/s, per percorrere 1000 m sono necessari 2000 s.
- Risposta: **B**. Il rendimento di una macchina non può essere maggiore di uno perché l'energia non può essere creata, in ragione del primo principio della termodinamica.
- Risposta: **C**. Antoine-Laurent de Lavoisier (26 agosto 1743 8 maggio 1794) fu un chimico francese, riconosciuto come il padre della chimica moderna. A lui si deve la prima formulazione della legge di conservazione della massa. Gli altri personaggi sono fisici o astronomi che diedero tutti, in tempi e modi diversi, un contributo nelle indagini sulla natura della Terra come pianeta.
- Risposta: A. Con la riduzione della temperatura dell'aria la tensione di vapore dell'acqua disciolta diminuisce formando delle particelle di liquido che si depositano per tensione superficiale sul recipiente tolto dal frigo.
- Risposta: **C**. Sulla scala atomica la forza elettrica è di gran lunga la più grande in modulo.
- Risposta: **B**. Il potenziale di ionizzazione si misura in volt.
- Risposta: **B**. Essendo la temperatura più bassa la densità è più alta.
- Risposta: **c**. Nell'ipotesi di validità della legge dei gas perfetti il prodotto pressione per volume si mantiene costante.
- Risposta: **E**. Il prodotto carica e differenza di potenziale definisce un'energia.
- Risposta: **D**. Sulla Luna una massa di 80 kg pesa circa 233 N.

© Ulrico Hoepli Editore S.p.A. Soluzioni e commenti 29

- Risposta: **E**. Non si conosce la temperatura iniziale dell'acqua, non è possibile fornire una risposta.
- Risposta: **C**. La densità di una grandezza X (generalmente la massa), è il rapporto tra la quantità della grandezza X e il volume.
- Risposta: A. Il termometro sfrutta la dilatazione termica.
- Risposta: **D**. La forza che un campo magnetico esercita su un carica elettrica in movimento ha espressione $F = qv \wedge B_0 = q \cdot v B \cdot \text{sen}\theta$; nel nostro caso sen $\theta = 1$ perciò la forza sarà $F = 0.4 \text{ T} \cdot 300 \text{ m/s} \cdot 0.2 \text{ C} = 24 \text{ N}.$
- Risposta: **D**. Se i due punti sono equipotenziali la differenza è nulla.
- Risposta: A. Le trasformazioni di fase corrispondono a trasformazioni a temperatura costante, poiché il calore assorbito o ceduto è il calore latente.
- Risposta: **B**. Le particelle alfa hanno un effetto ionizzante tale da permettere una valutazione caratteristica del loro effetto in un contatore Geiger.
- Risposta: **D**. Il verso della corrente è assunto essere quello proprio delle cariche positive.
- Risposta: **E**. A velocità costante il sistema è inerziale, l'accelerazione diretta parallelamente al piano è g seni.
- Risposta: **D**. La forza centrifuga e la forza peso si eguagliano annullandosi.
- Risposta: **D**. Il parallelo di due resistenze da una resistenza risultante pari a

$$\frac{1}{R_{tot}} = \frac{1}{R} + \frac{1}{R} = \frac{2}{R}$$

da cui $R_{tot} = R/2$. Poiché $V = Ri = \cos t$ allora se la resistenza si dimezza la corrente deve per forza aumentare, quindi la corrente che passa nelle due resistenze è pari a 2i.

- Risposta: A. Le forze dissipative assorbono l'energia totale meccanica del sistema.
- Risposta: A. Il calorimetro a ghiaccio può essere utilizzato per misurare il calore specifico di un corpo sfruttando la trasformazione di stato solido liquido.

- Risposta: **A**. Il prodotto definisce un lavoro è misurato quindi in joule.
- Risposta: **A**. Spazio percorso = velocità media \cdot tempo, 1h 15 m = 1 + 1/4 = 5/4 h, 5/4 \cdot 100 = 125 km.
- Risposta: **C**. Il volt, (1 joule/1 coulomb), è l'unità di misura del potenziale.
- Risposta: **D**. Il campo elettrico è proporzionale alla carica.
- Risposta: **C**. Le unità di misura sono quelle di un peso specifico.
- Risposta: **C**. La densità è il rapporto tra la massa e l'unità di volume.
- Risposta: A. I raggi X sono onde elettromagnetiche la cui velocità è uguale a quella della luce in quel mezzo, essendo questi una radiazione elettromagnetica.
- Risposta: **E**. Il neutrone ha una massa maggiore.
- Risposta: **C**. La circonferenza misura 3,14 m, il periodo è quindi 1,57 s, con frequenza di circa 0,6 Hz.
- Risposta: **C**. Per definizione di energia cinetica essa non può essere negativa.
- Risposta: **C**. Le risposte **E**, **D**, **B** sono tutte sbagliate poiché il modulo di c è c = 5a e quindi questo le esclude, mentre la **A** risulta errata poiché 2 vettori uguali tra loro non possono certo essere perpendicolari tra loro.
- Risposta: **C**. Il rendimento è il rapporto adimensionale fra lavoro fatto e calore assorbito.
- Risposta: **B**. La densità di un uomo è poco inferiore a quella dell'acqua.
- Risposta: E. La resistività è una caratteristica intrinseca dei conduttori.
- Risposta: **A**. La temperatura è una grandezza fisica.
- Risposta: **D**. Lavoro fatto = 98 N · sen $30^{\circ} \cdot 20 = 980$ J.
- Risposta: **D**. Dalla seconda legge della dinamica peso = massa \cdot accelerazione = $5 \cdot 9.8 = 49 \text{ N}.$

- Risposta: **E**. Un atmosfera, misura tecnica, è il peso di un chilogrammo su una superficie di un centimetro quadro.
- Risposta: **C**. Il moto è prima accelerato per l'effetto della forza peso poi diventerà uniforme sotto l'azione delle forze viscose.
- Risposta: **B**. L'urto generato conserva la quantità di moto totale del sistema, ovvero è valida l'applicazione del terzo principio della dinamica.
- Risposta: **C**. L'energia cinetica ha le dimensioni del lavoro prodotto scalare tra forza e spostamento, quindi pari a una massa moltiplicata per il quadrato di una velocità.
- Risposta: **B**. Un corpo immerso in acqua riceve una spinta verso l'alto pari al peso del volume di acqua spostato, questa spinta può essere quantificabile come $R = \rho' g V$ dove V è il volume di acqua spostato, g è l'accelerazione di gravità e ρ' è la densità dell'acqua. Il peso del corpo è invece esprimibile come $P = \mu g V$ dove V è il volume del corpo, g l'accelerazione di gravità e ρ la sua densità. Se il corpo galleggia possiamo eguagliare le 2 espressioni, ricordando che il corpo galleggia quando ha sommerso 3/4 del suo volume quindi $\rho' g V = \rho' g 3 v/4$, semplificando si ottiene $\rho = 3/4 \rho'$ essendo $\rho' = 1000 \text{ kg/m}^3$, allora $\rho = 750 \text{ kg/m}^3$.
- Risposta: **C**. Infatti per i vasi sanguiferi non è presente il 2 che vale nel caso di tutti gli altri condotti.
- Risposta: A. Fornendo lavoro a un sistema adiabatico è possibile innalzarne la temperatura.
- Risposta: **A**. Il gas segue la legge pV = RT, se il volume è costante, come R, se la pressione raddoppia anche la temperatura lo farà quindi T = 27 °C = 300 K, perciò $T_{fin} = 600$ K = 327 °C.
- Risposta: **C**. Se noi indichiamo con F_{res} la forza resistente e con F_{delt} quella dei deltoidi, e scriviamo l'equilibrio alla rotazione

 $F_{res} \cdot 20 = F_{delt} \cdot 5$ ricaviamo che $F_{delt}/F_{res} = 4$.

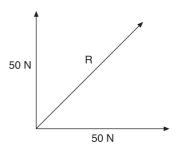
- Risposta: A. I conduttori metallici condividono uno o più elettroni, che permettono il passaggio di corrente.
- Risposta: **E**. Per effetto termoionico gli elettroni liberi vengono sparati da un forte campo elettrico.

- Risposta: **C**. Il fattore di conversione tra la velocità espressa in km/h e la velocità espressa in m/s è 3,6 km/h = 1m/s. Quindi la velocità di 100 km/h corrisponde a circa 27 m/s.
- Risposta: **C**. Il peso specifico del piombo è maggiore di quello dell'acqua, la forza peso prevale sulla spinta di Archimede.
- Risposta: **B**. Infatti in una goccia di liquido la forza di tensione superficiale tenderebbe a contrarre la goccia fino a farle assumere dimensioni nulle, a questa azione però si oppongono le molecole di acqua con forze di pressione dirette verso l'esterno. Se supponiamo di voler gonfiare una goccia di un Δr il lavoro svolto dalle forze di pressione sarà $4\pi p r^2 \Delta r$, mentre quello delle forze tangenziali $8\pi \tau r \Delta r$; l'equilibrio si raggiunge quando si eguagliano le 2 espressioni $p4\pi r^2 > \Delta r = 8\pi \tau r \Delta r$ da cui $p = 2\tau/r$ che è il valore della differenza di pressione.
- Risposta: **B**. La materia è costituita da molecole.
- Risposta: **E**. 3000 calorie sono 3×10^3 cal, ovvero 3 kcal.
- Risposta: **C**. Nel moto circolare uniforme la velocità è tangente al cerchio, mentre l'accelerazione è diretta in direzione radiale.
- Risposta: **E.** Forza = massa · accelerazione = $3 \cdot (9,8-2) = 23,4 \text{ N}$.
- Risposta: **C.** Basta sostituire il valore d = 0 nella relazione e questa è verificata come identità. La **B** e la **D** non sono esatte perché se così fosse avremmo come risultato due quantità differenti che si uguagliano (per es., c = 5 e d = 7), se fosse vera la **B** il risultato sarebbe 12 = -2, mentre se fosse vera la **D** avremo -2 = 12).
- Risposta: **B**. Sale fino alla superficie dell'acqua sotto l'azione della spinta d'Archimede che prevale sul peso della pallina.
- Risposta: **C**. Due grandezze omogenee hanno le stesse dimensioni quindi è possibile sommarle.
- Risposta: **A.** La luce si propaga circa 300 000 km/s = $3 \cdot 10^8$ m/s.
- Risposta: **C**. La carica di un elettrone accelerata da un campo elettrico di 10 V/m per un metro, assume un'energia di 10 e V.
- Risposta: **B**. L'eco è dovuta alla riflessione delle onde sonore.

- Risposta: A. La quantità di moto è il prodotto tra massa e velocità, che è uguale e opposto.
- 875 Risposta: A. Una soluzione di un sale in acqua produce un abbassamento della temperatura di solidificazione (abbassamento crioscopico).
- 876 Risposta: C. Il parallelo di due resistenze si valuta con il reciproco della somma dei reciproci, ed è sempre inferiore al più piccolo in modulo.
- 877 Risposta: **C**. La temperatura di ebollizione dell'acqua pura in condizioni normali è per definizione pari a 100 °C.
- 878 Risposta: **D**. Grazie al fenomeno dell'induzione magnetica, si può trasformare l'energia elettrica in meccanica, poiché il campo magnetico ha circuitazione non nulla.
- 879 Risposta: **C.** In assenza di dissipazione l'energia totale del sistema palla si conserva indefinitamente.
- 880 Risposta: **D**. La forza peso, o gravitazionale, ha una circuitazione nulla, ammette quindi un potenziale.
- Risposta: **D**. Fili percorsi da corrente generano campi magnetici.
- Risposta: **C**. La spinta di Archimede è uguale al peso del fluido spostato.
- Risposta: **D**. $S = 0.5 \text{ g} \cdot T^2$, risolvendo rispetto al tempo T, $100 = 0.5 \cdot 10 T^2$ quindi $T = 20^{1/2} = 4.5 \text{ s.}$
- Risposta: D. Infatti il potenziale elettrico ha espressione

$$\frac{Q}{4\pi\varepsilon} \times \frac{1}{r}$$

perciò è impossibile che sia costante in una regione poiché il raggio è obbligato a variare, eccetto quando è uguale a zero, mentre il campo si scrive come $\frac{Q}{4\pi\varepsilon} \times \frac{1}{r^2}$


$$\frac{Q}{4\pi\varepsilon} \times \frac{1}{r^2}$$

ma è ovvio che se il potenziale è nullo anche il campo elettrico lo deve essere.

- Risposta: A. L'energia è una quantità scalare.
- Risposta: **D**. Una caloria equivale a 4,186 joule.
- Risposta: A. La lunghezza d'onda è il prodotto tra velocità e periodo.

- Risposta: **D**. Nel Sistema Internazionale (SI) l'ampere misura l'intensità di corrente.
- Risposta: B. per definizione.
- Risposta: **D**. La riduzione di pressione abbassa la temperatura alla quale la tensione di vapore eguaglia la pressione esterna.
- Risposta: C. Nelle stesse condizioni moli uguali di gas diversi occupano i medesimi volumi.
- Risposta: **B**. L'accelerazione di gravità sulla superficie dipende dalla distanza dal centro della Terra in ragione dell'inverso del quadrato della distanza.
- 893 Risposta: **D**. Come si vede dal disegno la somma di queste due forze crea una risultante il cui valore è:

$$R = \sqrt{50^2 + 50^2} = 70,7 \text{ N}$$

- Risposta: C. Il seno di 30° è 0,5, quindi 10 · 0,5
- 895 Risposta: **D**. Un cm³ è un millesimo di litro ovvero un milionesimo di m³, un metro cubo pesa circa $19 \cdot 10^3$ kg.
- 896 Risposta: C. Due condensatori posti in parallelo fra la stessa differenza di potenziale, le loro capacità vengono sommate.
- Risposta: D. La frequenza spaziale è uguale all'inverso della lunghezza d'onda.
- Risposta: D. La forza gravitazionale è inversamente proporzionale al quadrato della distanza.
- Risposta: E. Il lavoro (prodotto scalare tra forza e spostamento) è in questo caso nullo.
- Risposta: A. Dalla famosa equazione di Torricelli, derivante dal peso esercitato su una superficie S da una colonna di liquido avente peso d · h · $S \cdot g$, peso = massa · accelerazione.

- Risposta: **A**. Il tempo impiegato a fermarsi è il tempo necessario a percorrere lo spazio s. Quindi il tempo è $t = 1,44 \ s$.
- Risposta: **C**. Si dividono sia gli scalari, sia le unità di misura; i metri cubi, divisi per metri lineari, definiscono metri quadri.
- 903 Risposta: **B**. L'intensità di onda ha espressione:

$$I = \frac{P}{\Delta S}$$

dove P è la potenza irradiata da S e ΔS è la superficie su cui si irradia la potenza, quindi

$$I = \frac{F \cdot v}{S} = p \cdot v$$

successivamente è sufficiente dividere l'intensità per la velocità così da ottenere la pressione

$$p = \frac{I}{v} = \frac{20 \text{ W/m}^2}{330 \text{ m/s}} = 0.06 \text{ Pa}$$

- Risposta: A. Il dinamometro è lo strumento di misura delle forze.
- 905 Risposta: **B**. Il watt è l'unità di misura della potenza nel Sistema Internazionale.
- Risposta: A. 120 °C sono circa 400 K, 500 °C sono circa 800 K, l'energia è proporzionale alla temperatura termodinamica per la costante di Boltzmann (*R* gas perfetti fratto numero di Avogadro).
- Risposta: **C**. Dal calcolo dimensionale, o dalla forza centrifuga $V^2/R = g$.
- Risposta: A. La composizione di un moto rettilineo e di un moto uniformemente accelerato definisce una curva piana detta parabola.
- Risposta: **D**. I due vettori sono indipendenti, fatto salvo che l'accelerazione è la derivata del vettore velocità nel tempo, per un sistema inerziale.
- Risposta: **D**. Applicando la conservazione della portata al condotto divergente, otteniamo che la velocità diminuisce percorrendo il condotto, e di conseguenza la pressione aumenta.
- Risposta: A. Un qualsiasi bipolo (induttanza, capacità, resistenza) posto in serie a un altro è percorso dalla stessa corrente. Viceversa se posto in parallelo a un secondo è sottoposto alla medesima tensione. Capacità in parallelo hanno capacità equivalente pari alla loro somma. Capacità poste in serie hanno capacità equivalente il cui inverso è pari alla loro somma degli inversi.

- Risposta: **C**. Il rendimento è per definizione il rapporto tra lavoro utile ed energia spesa.
- Risposta: **D**. Secondo il principio di conservazione dell'energia, la quota raggiunta è proporzionale al quadrato della velocità verticale.
- Risposta: A. La seconda legge di Newton afferma che la risultante delle forze applicate su un corpo è uguale al prodotto della massa del corpo per la sua accelerazione.
- Risposta: **D**. Il calore è una forma di energia che non può spostarsi spontaneamente tra corpi alla stessa temperatura (principio zero della termodinamica).
- Risposta: **B**. Gli errori sono più di due, un'onda trasversale non si propaga in fluido, la lunghezza d'onda può variare, la frequenza non varia nei diversi mezzi.
- Risposta: **B**. La forza è definita come il prodotto della massa per l'accelerazione.
- Risposta: **B**. A una reazione vincolare e a una forza centrifuga.
- Risposta: **C**. Il peso è il prodotto della massa per accelerazione di gravità pari a circa 9,8 ms⁻
- 920 Risposta: A. La misura della capacità elettrica è il farad rapporto tra un coulomb e un volt.
- Risposta: **A**. Il periodo di rotazione è maggiore, quindi la pulsazione o frequenza è minore.
- Risposta: **C**. Può essere liquefatto anche solo per mezzo di una compressione, diversamente da un gas.
- Risposta: **C**. Essendo i conduttori posti in parallelo essi sono posti sotto l'effetto della stessa caduta di potenziale, quindi la corrente che li attraversa è inversamente proporzionale alla resistenza.
- Risposta: **B**. Il numero di portatori di carica aumenta, aumentando la conducibilità.
- Risposta: **D**. L'accelerazione è la derivata temporale del vettore velocità, la cui variazione può essere solo in modulo (tangenziale), o solo in direzione (centripeta).
- Risposta: A. La resistenza equivalente di due resistenze uguali è pari alla metà di ciascuna,

una resistenza molto maggiore diminuisce un poco la resistenza totale.

- Risposta: **B**. La compressione tramite la pompa è un processo quasi adiabatico in cui l'aumento di pressione induce una variazione di temperatura.
- 928 Risposta: A. La capacità termica dell'acqua è tra le più alte esistenti in natura.
- Risposta: A. La pressione esercitata non dipende dalla sezione della colonna del liquido che la esercita.
- P30 Risposta: **E**. Il carico genera una forza pari al suo peso.
- Risposta: **B**. L'unità di misura del flusso del campo magnetico è il weber pari a un tesla per m².
- Risposta: **B**. Forza = massa · accelerazione, 9,8 \cdot 10 = 98 N.
- Risposta: **B**. Lo spostamento dalla condizione di equilibrio di una molla ideale è direttamente proporzionale alla forza applicata.
- Risposta: **D**. Il rendimento è definito dal rapporto tra la potenza utile e quella prodotta; la potenza utile è quella che viene effettivamente sfruttata dall'utilizzatore ed è sempre inferiore a quella erogata.
- Risposta: **B**. Il watt è una misura di potenza e non di energia.
- Pisposta: **A.** $v_1 = 72 \text{ km/h} = 20 \text{ m/s}, v \text{ (relativa)}$ = 20 + 35 = 55 m/s.
- Risposta: A. Con l'accelerazione negativa la fune diminuisce il suo stato di tensione.
- Risposta: **D**. Il moto è uniformemente accelerato, quindi lo spazio percorso è $s = \frac{1}{2} gt^2 = 0.5 \cdot 10 \cdot 6^2 = 180 \text{ m}.$

- Risposta: **C**. L'altezza di rilascio è 1 m, la velocità raggiunta è $(2 \cdot 9,8)^{1/2} = 4,4$ m/s.
- Risposta: **C**. Nel Sistema Internazionale (SI) la forza si misura in newton.
- 941 Risposta: **B**. La temperatura di –183 °C è circa 183 K; 183 + 183 = 276 K = 0 °C.
- Risposta: **D**. Gli specchi non presentano alcuna aberrazione cromatica.
- Risposta: **C**. La velocità è la derivata nel tempo dello spazio, tangente della curva tempo spazio.
- Risposta: **B**. Un sistema di riferimento solidale con la Terra sarebbe in moto non rettilineo rispetto al Sole quindi non inerziale.
- 945 Risposta: **C**. Peso = $(50 \cdot 10^{-6})^2 \cdot 3,14/4 \cdot 0,1 \cdot 1,5 \text{ (kg/m}^3)$ = = $2,5 \cdot 10^{-9} \cdot 3,14/4 \cdot 10^{-1} \cdot 1,5 \cdot 10^3$ = = $3 \cdot 10^{-7} \text{ kg} = 0,3 \cdot 10^{-3} \text{ mg}.$
- Risposta: **D**. Il flusso in una spira percorsa da corrente può essere scritto come $\phi = L \cdot i = 6 \text{ H} \cdot 5 \text{ A} = 30 \text{ W}.$
- Risposta: **C**. Il lavoro fatto è uguale in modulo ma opposto in segno.
- Risposta: **E**. Nel Sistema Internazionale (SI) il momento si misura in Nm.
- Risposta: **B**. Per la rifrazione si può scrivere $n_1 \text{sen}\theta_1 = n_2 \text{sen}\theta_2$, dove θ_2 è l'angolo di rifrazione richiesto; perciò sostituendo si ottiene 1,33 · sen $45^\circ = 1,5 \cdot \text{sen}\theta_2$ da cui

$$\operatorname{sen}\theta_2 = \frac{1,33 \cdot \operatorname{sen}\theta_1}{1,5}$$

Da cui si può trovare $\theta_2 = 39^\circ$.

Pisposta: **D**. L'espressione corretta è mv^2/R , come da un facile calcolo dimensionale.